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Abstra
tIn this paper the geometri
 stru
ture of the spa
e S�of the belief fun
tions de�ned over a dis
rete set � (be-lief spa
e) is analyzed. Using the Moebius inversionlemma we prove the re
ursive bundle stru
ture of thebelief spa
e and show how an arbitrary belief fun
tion
an be uniquely represented as a 
onvex 
ombinationof 
ertain elements of the �bers, giving S the form ofa simplex.The 
ommutativity of orthogonal sum and 
onvex 
lo-sure operator is proved and used to depi
t the geomet-ri
 stru
ture of 
onditional subspa
es, i.e. sets of belieffun
tions 
onditioned by a given fun
tion s. Futureappli
ations of these geometri
 methods to 
lassi
alproblems like probabilisti
 approximation and 
anon-i
al de
omposition are outlined.Keywords. Theory of eviden
e, belief spa
e, �berbundle, 
onvex de
omposition, 
ommutativity, 
ondi-tional subspa
e.1 Introdu
tionEvidential reasoning is be
oming a useful tool for solv-ing important engineering problems. Computer vi-sion, among the others, is an ex
iting �eld in whi
hvery diÆ
ult problems are solved by means of a widespe
trum of mathemati
al tools, ranging from di�er-ential geometry to statisti
s, to logi
. When one triesand apply the theory of eviden
e to 
lassi
al visionproblems a number of important question arises.Obje
t tra
king, for instan
e, 
onsists on estimatingat ea
h time instant the 
urrent 
on�guration of anarti
ulated obje
t from a sequen
e of images of themoving body. In a re
ent work of ours ([3℄), imagefeatures are represented as belief fun
tions and 
om-bined to produ
e an estimate of the pose q̂(t) 2 ~Q,where ~Q is a \good" �nite approximation of the pa-rameter spa
e Q of the obje
t.A method for deriving a pointwise estimate from thebelief fun
tion emerging from the 
ombination is then

needed, for example by 
hoosing the \best" proba-bilisti
 approximation of the belief estimate and 
om-puting the 
orresponding expe
ted pose. Note thatthis is not a de
ision problem, and the most a

urateestimate of the real ve
tor q is desired.Another interesting task (data asso
iation, [2℄) 
on-sists on re
onstru
ting the asso
iation between mov-ing points appearing in 
onse
utive images of a se-quen
e. When one supposes these points belongingto an arti
ulated body whose topologi
al model isknown, the rigid motion 
onstraint 
an be used inorder to a
hieve the desired 
orresponden
e. Sin
ethis 
onstraint must be expressed in 
onditional way,the idea of 
ombination of 
onditional belief fun
tions(see [2℄, Chapter 7) in a �lter-like pro
ess has to beaddressed.In this work we introdu
e a geometri
 formulation ofthe basis 
on
epts of the theory of eviden
e, as anenvironment where at least some of the above prob-lems 
an �nd a satisfa
tory solution. A 
entral roleis played by the notion of belief spa
e S, introdu
edin Se
tion 3, while in Se
tion 4 the Moebius inver-sion lemma is exploited to investigate its 
onvexityand symmetry. With the aid of some 
ombinatorialresults, the re
ursive bundle stru
ture of S is provedand an interpretation of its 
omponents (bases and�bers) in term of 
lasses of b.f.s is provided.Next, we 
hara
terize the relation between fo
al ele-ments and the 
onvex 
losure operator, and show inparti
ular how every belief fun
tion 
an be uniquelyde
omposed as a 
onvex 
ombination of pseudo-probabilities, giving S the form of a simplex. In Se
-tion 6 the behavior of Dempster's rule of 
ombina-tion within this geometri
 framework is analyzed, byproving that the orthogonal sum 
ommutes with the
onvex 
losure operator. This allows us to give a ge-ometri
 des
ription in term of subspa
es of the 
ol-le
tions of belief fun
tions 
ombinable with a givenb.f. s, and the set of belief fun
tions obtainable froms by means of 
ombination of new eviden
e (
ondi-tional subspa
e).



Finally, some hints of the potential appli
ations of thisformalism are given.1.1 Previous workIn a re
ent paper [7℄, Ha and Haddawy exploit meth-ods of 
onvex geometry to represent probability inter-vals in a 
omputationally eÆ
ient fashion, by meansof a data stru
ture 
alled p

-tree, founded on a gen-eralization of the 
onvex 
losure 
alled 

-operator.They show that belief fun
tions 
an be representedby 2-level p

-trees and study the evidential updat-ing in this 
ontext.On the other side, a number of papers have been pub-lished on approximation of belief fun
tions (see [1℄ fora review), mainly in order to �nd eÆ
ient implemen-tations of the rule of 
ombination aiming to redu
ethe number of fo
al elements. Tessem ([15℄) in
or-porates only the highest-valued fo
al elements in hismklx approximation; a similar approa
h inspires thesummarization te
hnique formulated by Lowran
e etal. ([10℄).About 
onditional belief fun
tions, Fagin and Halpern([6℄) formulate a de�nition based on inner measures,as lower envelope of a family of 
onditional probabilityfun
tions, and provide a 
losed-form expression for it.M. Spies ([14℄) establishes a link between 
onditionalevents and dis
rete random sets, de�ning 
onditionalevents as sets of equivalent events under the 
ondi-tioning relation. By applying to them a multivaluedmapping ([4℄), he de�nes 
onditional belief fun
tionsand introdu
es an updating rule (that is equivalent tothe law of total probability is all beliefs are probabil-ities).2 Belief fun
tionsFollowing Shafer [11℄ we 
all a �nite set of possibilitiesframe1of dis
ernment (FOD).De�nition 1. A basi
 probability assignment(b.p.a.) over a FOD � is a fun
tion m : 2� ! [0; 1℄su
h thatm(;) = 0; m(A) � 0 8 A � �; XA��m(A) = 1:The elements of 2� asso
iated to non-zero values ofm are 
alled fo
al elements and their union 
ore. Nowsuppose a b.p.a. is introdu
ed over an arbitrary FOD.De�nition 2. The belief fun
tion Bel asso
iated toa basi
 probability assignment m is de�ned as:Bel(A) = XB�Am(B):

An alternative de�nition of belief fun
tions 
an begiven independently from the presen
e of a basi
 prob-ability assignment (see [11℄).Belief fun
tions representing distin
t bodies of evi-den
e are 
ombined by means of the Dempster's ruleof 
ombination.De�nition 3. the orthogonal sum Bel1�Bel2 of twobelief fun
tions is a fun
tion whose fo
al elements areall the possible interse
tions between the 
ombiningfo
al elements and whose b.p.a. is given bym(A) = Xi;j:Ai\Bj=Am1(Ai)m2(Bj)1� Xi;j:Ai\Bj=;m1(Ai)m2(Bj) :The normalization 
onstant in the above expressionmeasures the level of 
on
i
t between belief fun
tionsfor it represents the amount of probability they at-tribute to 
ontradi
tory (i.e. disjoint) subsets.Dempster's rule is easily extended to the 
ombinationof several belief fun
tions.In the theory of eviden
e a probability fun
tion is sim-ply a pe
uliar belief fun
tion satisfying the additivityrule for disjoint sets.De�nition 4. A Bayesian belief fun
tion assigns ba-si
 probabilities only to singletons � 2 � of the under-lying frame: m(A) = 0 8 A s:t: jAj > 1.It 
an be proved thatProposition 1. A fun
tion Bel is Bayesian , 9 p :�! [0; 1℄ su
h thatX�2� p(�) = 1; Bel(A) =X�2A p(�) 8A � �:3 Belief spa
eConsider a frame of dis
ernment � and introdu
e inthe Eu
lidean spa
e Rj2�j an orthonormal referen
eframe fxigi=1;:::;j2�j in whi
h, given an arbitrary or-dering in 2�, ea
h 
oordinate fun
tion xi measuresthe value of belief asso
iated to a the i-th subset of �.De�nition 5. The belief spa
e asso
iated to � isthe set of points S of Rj2�j 
orresponding to a belieffun
tion.3.1 Limit simplexThe properties of Bayesian belief fun
tions 
an be use-ful to have a �rst idea of the shape of the belief spa
e.Lemma 1. If p is a Bayesian belief fun
tion over aframe � and B an arbitrary subset of �XA�B p(A) = 2jBj�1 � P (B):



Proof. The sum 
an be rewritten as P�2B k�p(�)where k� is the number of subsets of B 
ontaining�. But k� = 2jBj�1 for ea
h singleton, so thatXA�B p(A) = 2jBj�1 �X�2B p(�) = 2jBj�1 � P (B):As a 
onsequen
e all the Bayesian fun
tions are 
on-strained to belong to a well-determined region of thebelief spa
e.Corollary 1. The set P of all the Bayesian belieffun
tions with domain � is in
luded into the j�j � 1-dimensional simplexL = fs s:t: XA�� s(A) = 2j�j�1gof the j�j-dimensional belief spa
e S, 
alled limit sim-plex.Theorem 1. The set of all the belief fun
tions overa frame � is a subset of the region delimited by thelimit simplex L: XA�� s(A) � 2j�j�1where the equality holds i� s is Bayesian.Proof. The sum 
an be written asfXi=1 ai �m(Ai)where f is the number of fo
al elements of s and aiis the number of subsets of � in
luding the ith fo
alelement Ai, namely ai = jfB � � s:t: B � Aigj.Obviously ai = 2j�nAj � 2j�j�1 and the equality holdsi� jAj = 1. ThenXA�� s(A) = fXi=1 m(Ai) � 2j�j�1= 2j�j�1 � fXi=1 m(Ai) = 2j�j�1 � 1 = 2j�j�1i� jAij = 1 for every fo
al element of s, i.e. s isBayesian.It is important to point out that P in general doesnot sell out the limit simplex L. At the same timethe belief spa
e generally does not 
oin
ide with theentire region bounded by L, as is shown by the pi
tureof the belief spa
e S2 asso
iated to a binary frame.Example. Suppose � = f�1; �2g: we have P = L \fs : s(�) = 1g and the belief spa
e has the formillustrated in Figure 1.

Figure 1: The belief spa
e S and its probabilisti
 bor-der P for a binary frame.3.2 Upper probabilitiesAnother hint on the stru
ture of S 
omes from theparti
ular relation of Bayesian belief fun
tions withthe 
lassi
al L1 distan
e in the Eu
lidean spa
e.Let Cs denote the 
ore of s, and de�ne the followingorder relation:s � s0 � s(A) � s0(A) 8A � �:Lemma 2. If s � s0 then Cs � Cs0 .Proof. Obviously, sin
e s(A) � s0(A) for every A ��, that is true for Cs0 too, i.e. s(Cs0) = 1 but thenCs � Cs0 .Theorem 2. If s : 2� ! [0; 1℄ is an arbitrary belieffun
tion over a frame � thenks� pkL1 = XA�� js(A)� p(A)j = 
ost = f(s)for every Bayesian fun
tion p : 2� ! [0; 1℄ whi
h isgreater then s, i.e.p(A) =X�2A p(f�g) � s(A) 8A � �:Proof. Lemma 2 guarantees that Cp � Cs, so thatp(A) � s(A) = 1 � 1 = 0 for A � Cs. On the otherhand, if A \ Cs = ; then p(A) � s(A) = 0 � 0 = 0.What is left are sets 
orresponding to unions of nonempty proper subsets of Cs and arbitrary subsets of� n Cs. Given A � Cs there are 2j�nCsj subsets of theabove type 
ontaining it, so thatXA�� js(A) � p(A)j = 2j�nCsj � [XA�Cs p(A)� XA�Cs s(A)℄but then for Lemma 1= 2j�nCsj � [2jCsj�1 � 1� XA�Cs s(A)℄



that is the size f(s) of the upper probability simplexand is independent from p.A probability distribution satisfying the hypothesis ofTheorem 2 is said to be 
onsistent with s ([9℄). Ha etal. ([7℄) proved that the set P (s) of probability fun
-tions 
onsistent with a given b.f. s 
an be expressed(in the probability simplex, not the belief spa
e) asthe sum of the probability simplexes asso
iated to itsfo
al elements Ai; i = 1; :::; k of s, weighted by theirmasses: P (s) = kXi=1m(Ai)
onv(Ai)where 
onv(Ai) is the 
onvex 
losure of the probabil-ities fP�j� 2 Aig assigning 1 to an element of Ai.4 Bundle stru
tureThese preliminary results suggest the belief spa
eshould have the form of a simplex. A more detaileddes
ription needs resorting to the axioms of basi
probability assignments (see De�nition 1).4.1 Moebius inversion lemmaGiven a belief fun
tion s, the 
orresponding basi
probability assignment 
an be found by applying theso-
alled Moebius inversion lemmam(A) = XB�A(�1)jA�Bjs(B); (1)that 
omes out from the stru
ture of poset of powersets. We 
an exploit it to determine whether a points 2 Rj2�j 
orresponds to a belief fun
tion, by sim-ply 
omputing the b.p.a. and 
he
king the axioms mmust obey.The normalization 
onstraint PA��m(A) = 1 triv-ially translates into S � fs : s(�) = 1g. The positivity
ondition is more interesting, for it originates an in-equality resounding the third axiom of belief fun
tions([11℄, page 5). 8A � �:s(A) �PB�A;jBj=jAj�1 s(B) + ::::::+ (�1)jA�BjPjBj=k s(B) + ::::::+ (�1)jAj�1P�2� s(f�g) � 0: (2)4.1.1 Example: ternary frameLet us see the form of the belief spa
e in a simple butsigni�
ant 
ase: the ternary frame � = f�1; �2; �3g.If we denote the 
oordinates with

x = s(f�1g); y = s(f�2g); z = s(f�3g); u = s(f�1; �2g);v = s(f�1; �3g); w = s(f�2; �3g)the positivity 
onstraint (2) 
an be rewritten asS : 8>>>>>>>><>>>>>>>>:
x � 0; u � (x+ y)y � 0; v � (x+ z)z � 0; w � (y + z)1� (u+ v + w) + (x+ y + z) � 0 (3)By 
ombining the last equation in (3) with the otherswe obtain0 � x+ y + z � 1; 0 � u+ v + w � 2;
alled k = x+ y + z, it ne
essary follows that2k � u+ v + w � 1 + ku � (x+ y); v � (x+ z); w � (y + z):In other words, S reveals the stru
ture of �ber bun-

Figure 2: De
omposition of the belief spa
e in theternary 
ase.dle, in whi
h the variables x; y; z 
an move freely inthe unitary simplex, while the others are 
onstrainedto stay in a tetrahedron RP that depends on the sumx+ y + z = k (see Figure 3).System (3) shows a natural symmetry that re
e
ts the



intuitive partition of the variables in two sets, ea
h as-so
iated to subsets of � with a same size, respe
tivelyfx; y; zg � jAj = 1 and fu; v; wg � jAj = 2.It is easy to see that the group of symmetry of S isthe permutation group S(3), a
ting onto fx; y; zg �fu; v; wg by means of the 
orresponden
ex$ w; y $ v; z $ u:4.2 ConvexityAll the 
onstraints in Equation (2) de�ning S are ofthe form Xi2G1 xi � Xj2G2 xjwhere G1 and G2 are two disjoint sets of 
oordinates,as the above example 
on�rms. As a straightforward
onsequen
e,Theorem 3. S is 
onvex.Proof. Let us take two points P0; P1 2 S and provethat all the points of the segment P0+�(P1�P0); 0 �� � 1, belong to S. Sin
e P0; P1 2 SXi2G1 x0i � Xj2G2 x0j ; Xi2G1 x1i � Xj2G2 x1jwhere x0i ; x1i are the i-th 
oordinates of P0; P1 respe
-tively, so thatPi2G1 x�i =Pi2G1 [x0i + �(x1i � x0i )℄=Pi2G1 x0i + �Pi2G1(x1i � x0i )= (1� �)Pi2G1 x0i + �Pi2G1 x1i �� (1� �)Pj2G2 x0j + �Pj2G2 x1j=Pj2G2 [x0j + �(x1j � x0j )℄ =Pj2G2 x�j :It is well-known that belief fun
tions are a spe
ial typeof 
oherent lower probabilities, that in turn 
an beseen as a parti
ular 
lass of lower previsions (
onsult[17℄, Se
tion 5.13). Walley has proved that 
oherentlower probabilities are 
losed under 
onvex 
ombina-tion; this implies that 
onvex 
ombinations of belieffun
tions (
ompletely monotone lower probabilities)are still 
oherent. Theorem 3 is a stronger result,stating that they are also 
ompletely monotone.4.3 SymmetryThe above remark about the symmetry of the beliefspa
e in Example 4.1.1 
an be extended to the general


ase of a �nite n-dimensional frame � = f�1; :::; �ng.Let us establish for sake of simpli
ity the followingnotation: xixj :::xk := s(f�i; �j ; :::; �kg).Proposition 2. The general symmetry of the beliefspa
e is des
ribed by the following logi
 expression_1�i;j�n n�1̂k=1 ^fi1; :::; ik�1g �� f1; :::; ng n fi; jg xixi1 � � �xik�1lxjxi1 � � �xik�1where W(V) denotes the logi
al or (and), while $ in-di
ates the permutation of pairs of 
oordinates.Proof. Let us rewrite the Moebius 
onstraints, usingthe above notation:xi1 � � �xik � k�1Xl=1(�1)k�l+1 Xfj1;:::;jlg�fi1;:::;ikgxj1 � � �xjlLooking at the right side of the equation, it is 
learthat only a permutation between 
oordinates asso
i-ated to subsets of the same size may leave the in-equality inalterate.Given the triangular form of the system of inequali-ties (the �rst group 
on
erning variables of size 1, these
ond one variables of size 1 and 2, and so on), per-mutations among size k variables are always indu
edby permutations of variables of smaller size. Hen
ethe symmetries of S are determined by permutationsof singletons. But su
h an ex
hange xi $ xj deter-mines a sequen
e of permutations among the 
oordi-nates related to subsets 
ontaining �i and �j .The resulting symmetry Vk indu
ed by xi $ xj forthe k-th group of 
onstraints is then(xi $ xj) ^ � � � ^ (xixi1 � � �xik�1 $ xjxi1 � � �xik�1)8fi1; :::; ik�1g � f1; :::; ng n fi; jg:Sin
e Vk is obviously implied by Vk+1, and Vn is al-ways trivial (as a simple 
he
k 
on�rms), the overallsymmetry indu
ed by a permutation of singletons isdetermined by Vn�1, and by 
onsidering all the pos-sible permutations xi $ xj we have the thesis.In other words, the symmetry of S is determined bythe a
tion of the permutation group S(n) over the
olle
tion of the size 1 variables and the a
tion ofS(n) naturally indu
ed on the other variabless 2 S(n) : Pk(�) ! Pk(�)xi1 � � �xik 7! sxi1 � � � sxikwhere Pk(�) is the 
lass of the size k subsets of �. Itis not diÆ
ult to re
ognize the symmetry propertiesof a simplex, i.e. a 
olle
tion [�1; :::; �n℄ of points inthe Eu
lidean spa
e together with the sub-
olle
tions(fa
es) [�i1 ; :::; �ik ℄ of all the orders k � n.



4.4 Re
ursive bundle stru
tureThe de
omposition property shown in Example 4.1.1is a hint of a general feature of the belief spa
e: it 
anbe re
ursively de
omposed into �bers parameterizedby the 
oordinates related to subsets A � � with asame size. We �rst need some simple 
ombinatorialresults.Lemma 3.k�1Xm=l(�1)m�l�n� lm� l� = (�1)k�l+1�n� (l + 1)k � (l + 1)�:Proof.k�1Xm=l(�1)m�l�n� lm� l� = �n� l0 �� �n� l1 �+ ::::::+ (�1)k�(l+1)� n� lk � (l + 1)� == (k � (l + 1))! + :::+ (�1)k�(l+1)(n� l) � ::: � (n� k + 2)(k � (l + 1))!The �rst two terms of the numerator have a 
ommonfa
tor and 
an be rewritten as�(k�(l+1))!�(n�l�1);this in turn has in 
ommon (n� l� 1)(k� (l+1))!=2!with the third addendum giving (n � l � 1)(n � l �2)(k � (l+ 1))!=2! and so on. By iteration we get thethesis.Theorem 4.XjAj=k s(A) � 1 + k�1Xm=1(�1)k�m+1�n� (m + 1)k �m � � XjBj=m s(B):Proof. Let us suppose we have assigned an amountof mass to the subsets of size smaller than k,fm(B); jBj < kg with PjBj<km(B) < 1. The maxi-mum value of PA s(A) 
orresponds to assigning theremaining mass 1�PjAj<km(A) to the subsets of sizek. We obtain1� XjAj<km(A) = 1� XjAj<k XB�A(�1)jA�Bjs(B)= 1� k�1XjAj=m=1 mXjBj=l=1(�1)m�ls(B)= 1� k�1XjAj=m=1 mXjBj=l=1(�1)m�l�n� lm� l� � XjBj=l s(B)for �n�lm�l� is the number of subsets of sizem 
ontaininga �xed set B; jBj = l in a frame with n elements. This
an be rewritten as1� k�1XjBj=l=1(XjBj=l s(B)) � k�1Xm=l(�1)m�l�n� lm� l�

that using Lemma 3 be
omes1� k�1XjBj=l=1(XjBj=l s(B)) � (�1)k�l+1�n� (l + 1)k � (l + 1)�: (4)Now, if we write PjAj=k s(A) == XjAj=k XB�Am(A) = kXl=1 XjBj=lm(B) � �n� lk � l� =(sin
e �n�lk�l� is the number of size k subsets in
ludingsize i subsets)= XjBj=km(B) + k�1Xl=1 �n� lk � l� � (XjBj=lm(B))= XjBj=km(B)++ k�1Xl=1 �n� lk � l� � [ lXm=1(�1)l�m�n�ml �m� XjBj=m s(B)℄= XjBj=km(B) + k�1Xl=1(�1)k�l�1�n� lk � l� XjBj=l s(B);by substituting to the �rst addendum Equation (4)we get= 1 + k�1Xl=1(�1)k�l�1 � ( XjBj=l s(B)) � [�n� lk � l�� �n� (l + 1)k � (l + 1)�℄and by developing the pair of binomials we have thethesis.Now, let us re
all the notation used in Proposition 2.Theorem 5. The belief spa
e S has a re
ursive bun-dle stru
ture, i.e. it 
an be de
omposed into the fol-lowing sequen
e of domainsS p1�! D(1);F (1) := p�11 (x1; :::; xn) = SxiF (1) p2�! D(2);F (2) := p�12 (x1x2; :::; xn�1xn)) = Sxi;xixj� � �F (n�2) pn�1�! D(n�1);F (n�1) := p�1n�1(x1 � � �xn�1; :::; x2 � � �xn)) == Sxi;:::;xi1 ���xin�1



where Sxi;:::;xi1 ���xik is the se
tion of the belief spa
ewith xi1 � � �xij =
ost 8 fi1; :::; ijg � f1; :::; ng; 8j � k(i.e. the set of all the possible belief fun
tions whosebasi
 probability assignment m(A) is �xed for jAj �k).The i-th basis of S, D(i), is de�ned by the followingequationsxk1 � � �xki � Xm<i(�1)i�m+1 Xfl1; :::; lmg �� fk1; :::; kig xl1 � � �xlmxk1 � � �xkj = Xm<j(�1)j�m+1 Xfl1; :::; lmg �� fk1; :::; kjg xl1 � � �xlmXfk1; :::; kig �� f1; :::; ng xk1 � � �xki � 1 + i�1Xm=1(�1)i�m+1 ���n� (m+ 1)i�m � � Xfk1; :::; kmg �� f1; :::; ng xk1 � � �xkmwith i < j � n. F (i) is 
alled the the i-th �ber of thebelief spa
e, while pi is the proje
tion map of the i-thbundle level.

Figure 3: Pi
torial representation of the bundle stru
-ture of the belief spa
e.Remark. Note that D(i) is �ni�-dimensional and isparameterized by the variables xk1 � � �xki asso
iatedto the size i subsets of �, sin
e the values of the high-order variables are bond to them by the se
ond groupof equations.Proof. (sket
h) It suÆ
es to observe that the �rstgroup of 
onstraints de�ning D(i) summarizes theMoebius inequalities for subsets of size i, while these
ond one means that all the subsets with size greaterthan i satisfy the Moebius formulae as equalities. These
ond equation 
omes dire
tly from Theorem 4.Remark. D(i) = Cl(O(i); P (i)), where P (i) is the


olle
tion of belief fun
tions assigning all the remain-ing basi
 probability to subsets of size i, while O(i)assigns all the mass to �.Figure 3 summarizes our knowledge of the bundlestru
ture of the belief spa
e. S 
an be de
omposedinto a base D(1) (the simplex u = (x + y); v =(x + z); w = (y + z) in Example 4.1.1) whose pointsare glued to a �ber (RP in the ternary 
ase) whosedimension redu
es to zero at the upper border P(1)of D(1). This de
omposition re
ursively applies to the�bers, for i = 1; :::; n� 1.It is interesting to point out that the elements ofthis de
omposition have an intuitive meaning. Forinstan
e, P(1) = P is the set of the Bayesian belieffun
tions, while D(1) 
oin
ides to the 
olle
tion of thedis
ounted probabilities (see [11℄).5 Simpli
ial form of the belief spa
eThe bundle stru
ture of the belief spa
e introdu
edabove 
oexists with a simpler representation, resound-ing the polytope-like des
ription of the set of proba-bility distributions on a given domain ([7℄).De�nition 6. The set �(i) of the pseudo-probabilities of order i is the 
olle
tion of belief fun
-tions assigning all the basi
 probability to subsets ofsize i.Theorem 6. Every belief fun
tion s 2 S 
anbe uniquely expressed as a 
onvex 
ombination ofpseudo-probabilities of all the orders,s = nXi=1 �i�(i); nXi=0 �i = 1; �(i) 2 �(i):Proof.s = (XB�Am(B); A � �) = nXi=1( XB�A;jBj=im(B); A � �)but then Æ(i) := ( XB�A;jBj=im(B); A � �)is an unnormalized belief fun
tion assigning all themass to subsets of size i.By de�ning �(i) := Æ(i)kÆ(i)k we 
an writes = nXi=1 kÆ(i)k�(i) = nXi=1 �i�(i)withPni=1 �i =Pni=1 kÆ(i)k = 1 for the normalization
onstraint. Obviously �(i) 2 �(i).Not surprisingly, �(i) = P (i)0 .This 
onvex de
omposition property 
an be easilygeneralized in the following way.



Theorem 7. The set of all the belief fun
tions withfo
al elements in a given 
olle
tion X is 
losed and
onvex in S, namelyfs : A 2 Es ) A 2 Xg = Cl(fPA : A 2 Xg)where PA is the pseudo-probability assigning all themass to A, mPA(A) = 1.Proof. By de�nition fs : A 2 Es ) A 2 Xg == fs : s = ( XB�A;B2Esm(B)); Es � Xgbuts = XB2Esm(B) � (xA = 1; A � B;xA = 0; A 6� B)and (xA = 1; A � B;xA = 0; A 6� B) := PB , so thats = XB2Esm(B)PB = XB2Xm(B)PBby extending m to the elements B 2 X n Ex asm(B) = 0. Sin
e m is a basi
 probability assignment,PB2X m(B) = 1 and the thesis follows.Corollary 2. �(i) = Cl(fPB ; jBj = ig).Corollary 3. The belief spa
e S 
oin
ides to the 
on-vex 
losure of all the pseudo-probabilities of every or-der,S = Cl(�1; :::;�n�1; 0) = Cl(P 11 ; :::; P 1n ; :::; Pn�1x ; 0):The above result (that 
an be obtained dire
tly fromTheorem 7) 
on�rms our 
onje
ture about the natureof simplex of the belief spa
e indu
ed by the symmetryanalysis of Paragraph 4.3.6 CommutativityOn
e established the geometri
al properties of the be-lief fun
tions, it is natural to wonder what is the be-haviour of the rule of 
ombination in the frameworkof the belief spa
e.Theorem 8. Cl and � 
ommute, i.e. if s is 
ombin-able with si; 8i = 1; :::; n thens� Cl(fs1g; :::; fsng) = Cl(fs� s1g; :::; fs� sng);in other wordss�Xi �isi =Xi �i(s� si); Xi �i = 1:Remark. Being S 
onvex, if si 2 S 8i thenPi �isi 2S when Pi �i = 1.

Proof. Let us �rst 
ompute the basi
 probability as-signment asso
iated toPi �isi, by means of the Moe-bius inversion formula (1). If by hypothesis s(B) =Pi �isi(B) thenmPi �isi(A) =PB�A(�1)jA�BjPi �isi(B) =Pi �i �PB�A(�1)jA�Bjsi(B) =Pi �imi(A):Now, being Pi �isi 2 S for the above remark, wemust 
he
k if it 
ombinable with with s, obtainings�Pi �isi. Called Es the 
olle
tion of fo
al elementsof a belief fun
tion s, we haveEPi �isi = [i:�i 6=0 Esi ; (5)if �i 6= 0 8 i this redu
es to EPi �isi = S Esi . Thisway if s is 
ombinable with some si (even only one ofthem) then it is 
ombinable with Pi �isi.Let us 
all A1; :::; An the fo
al elements of Pi �isiand B1; :::; Bm those of s. The f.e. of s�Pi �isi are[i Es�sifor all the interse
tions are 
onsidered, but Prop-erty (5) gives exa
tly the same result for the f.e. ofPi �i(s � si). Hen
e, we have to 
he
k the 
orre-sponding basi
 probability assignments: for the latterwe have, denoting with fEkg the fo
al elements of si,mPi �is�si(A) =PB�A(�1)jA�BjPi �i(s� si)(B)=Pi �iPB�A(�1)jA�Bj(s� si)(B) =Pi �ims�si(A) =Pi �i XEk\Bj=Amsi(Ek)ms(Bj)1� XEk\Bj=;msi(Ek)ms(Bj)while, for s�Pi �isi,ms�Pi �isi(A) = XAk\Bj=AmPi �isi(Ak)ms(Bj)1� XAk\Bj=;mPi �isi(Ak)ms(Bj)= XAk\Bj=A(Xi �imsi(Ak)) �ms(Bj)1� XAk\Bj=;(Xi �imsi(Ak)) �ms(Bj)= Xi �i � XAk\Bj=Amsi(Ak)ms(Bj)Xi �i � XAk\Bj=;(Xi �imsi(Ak)) �ms(Bj)



= Xi �i � XAk\Bj=Amsi(Ak)ms(Bj)Xi �i � (1� XAk\Bj=;msi(Ak)ms(Bj))=Xi �i � PAk\Bj=Amsi(Ak)ms(Bj)1�PAk\Bj=;msi(Ak)ms(Bj) :Sin
e for Ak 62 Esi the addenda vanish, we remain forea
h i with the fo
al elements of si:Xi �i � PEk\Bj=Amsi(Ek)ms(Bj)1�PEk\Bj=;msi(Ek)ms(Bj) ; Ek 2 Esi :The fa
t that the orthogonal sum and 
onvex 
losureoperators 
ommute is a powerful tool. It provides asimple language that allows us to give geometri
 in-terpretations of the notions of 
ombinability and 
on-ditioning.7 Conditional subspa
esDe�nition 7. The 
onditional subspa
e hsi is theset of all the belief fun
tions 
onditioned by a givenfun
tion s, namelyhsi := fs� t; t 2 S s:t: 9 s� tg: (6)Sin
e not every belief fun
tion is 
ombinable withan arbitrary s, we need to understand the geometri
stru
ture of 
ombinable fun
tions.De�nition 8. The non-
ombinable subspa
e NC(s)asso
iated to a belief fun
tion s is the 
olle
tion of allthe b.f.s not 
ombinable with s,NC(s) := fs0 :6 9s0 � sg:Proposition 3. NC(s) = Cl(fPA : A \ Cs = ;g).Proof. It suÆ
es to point out that NC(s) = fs0 :Cs0 � Csg = fs0 : A � Cs 8A 2 Cs0g. Hen
e we 
anapply Theorem 7 and the thesis follows.The dimension of NC(s) is obviously 2j�nCsj � 2.Using the de�nition of non-
ombinable subspa
e we
an write hsi = s�(SnNC(s)) = s�fs0 : Cs0\Cs 6= ;g.Unfortunately, the last expression does not seem tosatisfy Theorem 7: for a b.f. s0 to be 
ompatible withs it suÆ
es to have one fo
al element interse
ting the
ore Cs, not all of them.De�nition 9. The 
ompatible subspa
e C(s) asso-
iated to a belief fun
tion s is the 
olle
tion of all theb.f.s with fo
al elements in
luded into the 
ore of s:C(s) := fs0 : Cs0 � Csg.

From Theorem 7 it follows thatCorollary 4. C(s) = Cl(fPA : A � Csg).The 
ompatible spa
e C(s) is only a proper subset ofthe 
olle
tion of belief fun
tions 
ombinable with s,S n NC(s): nevertheless, it 
ontains all the relevantinformation. In fa
t,Theorem 9. hsi = s� C(s).Proof. Let us denote with Es0 = fAig and Es = fBjgthe fo
al elements of s0 and s respe
tively. ObviouslyBj\Ai = Bj\Ai\Cs = Bj\(Ai\Cs) so that de�ninga new b.f. s00 with fo
al elementsAi := Ai \ Csand basi
 probability assignment m00(Ai) = m0(Ai)we have s� s0 = s� s00 .Now we are ready to formulate the geometri
 des
rip-tion of 
onditional subspa
es. From Theorem 7 and 9it 
omes dire
tlyCorollary 5. hsi = Cl(fs� PA; A � Csg).Note that s � PCs = s, hen
e s is always a vertex ofhsi. Of 
ourse hsi � C(s), sin
e the 
ore is amonotonefun
tion on the poset (S;��). Furthermoredim(hsi) = 2jCsj � 2 (7)for the dimension of hsi is simply the 
ardinality ofC(s) (note that ; is not in
luded) minus 1.We 
an observe thatdim(NC(s)) + dim(hsi) 6= dim(S):Corollary 5 depi
ts, in a sense, the global a
tion of theorthogonal sum in the belief spa
e. In [2℄ we started toanalyze the pointwise behavior of Dempster's rule inS, and its relation with the polytopes of probabilities
onsistent with the belief fun
tions to 
ombine.8 Con
lusions and perspe
tivesThe geometri
 analysis exposed above is still at its ini-tial stage, even if some interesting results have beena
hieved. We now have a pi
ture of the behavior of be-lief fun
tions as geometri
al obje
ts, but many ques-tions still need to be addressed.Some work has already been done on probabilisti
([12℄, [16℄) and possibilisti
 ([5℄) approximations ofbelief fun
tions. For instan
e, F. Voorbraak proposedthe following Bayesian approximation:m(A) = 8><>: PB�Am(B)PC��m(C)�jCj ; jAj = 10 otherwise



Nevertheless, we think that the geometri
 frameworkof the belief spa
e 
ould be the right 
ontext in whi
hto pose and then solve the problem. Sin
e a belieffun
tion is useful only when it is 
ombined with oth-ers in an automated reasoning pro
ess, we 
an 
laimthat a good approximation, when 
ombined with anyother belief fun
tion, produ
es results similar to whatobtained by 
ombining the original fun
tion. Analyti-
ally, ŝ = argmins02C Zt2C(s) dist(s� t; s0 � t)dt (8)where dist is one of the 
lassi
al Lp distan
e fun
-tions, and C is the 
lass of belief fun
tions where theapproximation must belong. It 
an be proved (see [2℄again) that for the simplest (binary) frame,Proposition 4. For every belief fun
tion s 2 S2, theprobabilisti
 approximation indu
ed by the 
ost fun
-tion (8) is unique, and 
orresponds to the normalizedplausibility of singletons for every arbitrary 
hoi
e ofthe distan
e fun
tion Lp 8p.This suggests that the optimal approximation 
an be
omputed in 
losed form. Furthermore, the proposed
riterion has a general s
ope, rests on intuitive prin-
iples and 
ould be adopted to solve a wide numberof problems.On the other side, it is easy to see that, given theshape of 
onditional subspa
es proved in Theorem 9,the simple 
omponents (e1; e2) of an arbitrary sepa-rable support fun
tion s in S2 
an be expressed asei = Cl(s; s� Pi) \ Cl(0; Pi) = Cl(s; Pi) \ Cl(0; Pi):Hen
e it seems likely that the language we introdu
ed,based on the two operators of 
onvex 
losure and or-thogonal sum, 
ould be powerful enough to provide ageneral solution to the 
anoni
al de
omposition prob-lem, alternative to Smets' ([13℄) and Kramosil's ([8℄)ones.The la
k of an evidential analogous of the notion ofrandom pro
ess is perhaps one of the major draw-ba
ks of the theory of eviden
e (as we mentioned inthe Introdu
tion) preventing a wider appli
ation toengineering problems. The knowledge of the geomet-ri
al form of 
onditional subspa
es 
ould be useful topredi
t the behavior of the series of belief fun
tionslimn!1(s1 � � � � � sn)and their asymptoti
 properties.In 
on
lusion, we 
an argue that even if the geomet-ri
al analysis of the spa
e of the belief fun
tions wasoriginally motivated by the approximation problemits potential appli
ations are far more extended, anddeserve further attentions.
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