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Abstract

In this paper the geometric structure of the space Sg
of the belief functions defined over a discrete set © (be-
lief space) is analyzed. Using the Moebius inversion
lemma we prove the recursive bundle structure of the
belief space and show how an arbitrary belief function
can be uniquely represented as a convex combination
of certain elements of the fibers, giving S the form of
a simplex.

The commutativity of orthogonal sum and convex clo-
sure operator is proved and used to depict the geomet-
ric structure of conditional subspaces, i.e. sets of belief
functions conditioned by a given function s. Future
applications of these geometric methods to classical
problems like probabilistic approximation and canon-
ical decomposition are outlined.

Keywords. Theory of evidence, belief space, fiber
bundle, convex decomposition, commutativity, condi-
tional subspace.

1 Introduction

Evidential reasoning is becoming a useful tool for solv-
ing important engineering problems. Computer vi-
sion, among the others, is an exciting field in which
very difficult problems are solved by means of a wide
spectrum of mathematical tools, ranging from differ-
ential geometry to statistics, to logic. When one tries
and apply the theory of evidence to classical vision
problems a number of important question arises.
Object tracking, for instance, consists on estimating
at each time instant the current configuration of an
articulated object from a sequence of images of the
moving body. In a recent work of ours ([3]), image
features are represented as belief functions and com-
bined to produce an estimate of the pose §(t) € Q,
where Q is a “good” finite approximation of the pa-
rameter space Q of the object.

A method for deriving a pointwise estimate from the
belief function emerging from the combination is then
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needed, for example by choosing the “best” proba-
bilistic approximation of the belief estimate and com-
puting the corresponding expected pose. Note that
this is not a decision problem, and the most accurate
estimate of the real vector ¢ is desired.

Another interesting task (data association, [2]) con-
sists on reconstructing the association between mov-
ing points appearing in consecutive images of a se-
quence. When one supposes these points belonging
to an articulated body whose topological model is
known, the rigid motion constraint can be used in
order to achieve the desired correspondence. Since
this constraint must be expressed in conditional way,
the idea of combination of conditional belief functions
(see [2], Chapter 7) in a filter-like process has to be
addressed.

In this work we introduce a geometric formulation of
the basis concepts of the theory of evidence, as an
environment where at least some of the above prob-
lems can find a satisfactory solution. A central role
is played by the notion of belief space S, introduced
in Section 3, while in Section 4 the Moebius inver-
sion lemma is exploited to investigate its convexity
and symmetry. With the aid of some combinatorial
results, the recursive bundle structure of S is proved
and an interpretation of its components (bases and
fibers) in term of classes of b.f.s is provided.

Next, we characterize the relation between focal ele-
ments and the conver closure operator, and show in
particular how every belief function can be uniquely
decomposed as a convex combination of pseudo-
probabilities, giving S the form of a simplex. In Sec-
tion 6 the behavior of Dempster’s rule of combina-
tion within this geometric framework is analyzed, by
proving that the orthogonal sum commutes with the
convex closure operator. This allows us to give a ge-
ometric description in term of subspaces of the col-
lections of belief functions combinable with a given
b.f. s, and the set of belief functions obtainable from
s by means of combination of new evidence (condi-
tional subspace).



Finally, some hints of the potential applications of this
formalism are given.

1.1 Previous work

In a recent paper [7], Ha and Haddawy exploit meth-
ods of convex geometry to represent probability inter-
vals in a computationally efficient fashion, by means
of a data structure called pcc-tree, founded on a gen-
eralization of the convex closure called cc-operator.
They show that belief functions can be represented
by 2-level pcc-trees and study the evidential updat-
ing in this context.

On the other side, a number of papers have been pub-
lished on approximation of belief functions (see [1] for
a review), mainly in order to find efficient implemen-
tations of the rule of combination aiming to reduce
the number of focal elements. Tessem ([15]) incor-
porates only the highest-valued focal elements in his
My, approximation; a similar approach inspires the
summarization technique formulated by Lowrance et
al. ([10]).

About conditional belief functions, Fagin and Halpern
([6]) formulate a definition based on inner measures,
as lower envelope of a family of conditional probability
functions, and provide a closed-form expression for it.
M. Spies ([14]) establishes a link between conditional
events and discrete random sets, defining conditional
events as sets of equivalent events under the condi-
tioning relation. By applying to them a multivalued
mapping ([4]), he defines conditional belief functions
and introduces an updating rule (that is equivalent to
the law of total probability is all beliefs are probabil-
ities).

2 Belief functions

Following Shafer [11] we call a finite set of possibilities
frame! of discernment (FOD).

Definition 1. A basic probability assignment
(b.p.a.) over a FOD © is a function m : 2° — [0, 1]
such that

m(0) =0, m(A) >0V ACO, Y m(4d) =1
ACO

The elements of 2° associated to non-zero values of
m are called focal elements and their union core. Now
suppose a b.p.a. is introduced over an arbitrary FOD.

Definition 2. The belief function Bel associated to
a basic probability assignment m is defined as:

Bel(4) = Y m(B).

BCA

An alternative definition of belief functions can be
given independently from the presence of a basic prob-
ability assignment (see [11]).

Belief functions representing distinct bodies of evi-
dence are combined by means of the Dempster’s rule
of combination.

Definition 3. the orthogonal sum Bel; & Bely of two
belief functions is a function whose focal elements are
all the possible intersections between the combining
focal elements and whose b.p.a. is given by

> mi(Ai)ma(By)

i,j:A;NB;=A

S

i,j:AiNB; =0

m(A) = .
“ m (A;)m2(Bj)

The normalization constant in the above expression
measures the level of conflict between belief functions
for it represents the amount of probability they at-
tribute to contradictory (i.e. disjoint) subsets.
Dempster’s rule is easily extended to the combination
of several belief functions.

In the theory of evidence a probability function is sim-
ply a peculiar belief function satisfying the additivity
rule for disjoint sets.

Definition 4. A Bayesian belief function assigns ba-
sic probabilities only to singletons 6 € © of the under-
lying frame: m(A) =0 V A s.t. |A] > 1.

It can be proved that

Proposition 1. A function Bel is Bayesian < 3 p:
© — [0,1] such that

Y p(6) =1, Bel(4) =Y p(h) VAC®.

e fe A

3 Belief space

Consider a frame of discernment © and introduce in
the Euclidean space R2°" an orthonormal reference
frame {z;};—1, |20/ in which, given an arbitrary or-
dering in 2°, each coordinate function z; measures
the value of belief associated to a the i-th subset of O.
Definition 5. The belief space associated to © is

the set of points S of RI2°! corresponding to a belief
function.

3.1 Limit simplex

The properties of Bayesian belief functions can be use-
ful to have a first idea of the shape of the belief space.

Lemma 1. If p is a Bayesian belief function over a
frame © and B an arbitrary subset of ©

> p(4) =257 P(B).

ACB



Proof. The sum can be rewritten as ), g kop(6)
where kg is the number of subsets of B containing
6. But kg = 2!PI=1 for each singleton, so that

S p(A) = 2171 3 pg) = 2811 p(B).

ACB 9B
O

As a consequence all the Bayesian functions are con-
strained to belong to a well-determined region of the
belief space.

Corollary 1. The set P of all the Bayesian belief

functions with domain © is included into the |©] — 1-
dimensional simplex

L={sst Y s(4)=2°""}
ACO
of the |©|-dimensional belief space S, called limit sim-
plex.
Theorem 1. The set of all the belief functions over
a frame © is a subset of the region delimited by the
limit simplex L:

D s(4) <2007t
ACO

where the equality holds iff s is Bayesian.

Proof. The sum can be written as

f
Zai -m(A4;)

where f is the number of focal elements of s and a;
is the number of subsets of ® including the i;h focal
element A;, namely a; = |{B C © s.t. B D A;}|.
Obviously a; = 219\l < 21®€1-1 and the equality holds
iff |A| = 1. Then

f

3 s(4) = Y m(4y) 20

ACO i=1

!
= 92/0-1. Zm(A") =9/0I-1.1 = 9/6|-1
i=1

iff |A;| = 1 for every focal element of s, i.e. s is
Bayesian. O

It is important to point out that P in general does
not sell out the limit simplex £. At the same time
the belief space generally does not coincide with the
entire region bounded by £, as is shown by the picture
of the belief space S» associated to a binary frame.

Example. Suppose © = {6;,60>}: we have P = LN
{s : (@) = 1} and the belief space has the form
illustrated in Figure 1.

A s({x,x,})
2

“ 2 A
s(x,) s(x,)

Figure 1: The belief space S and its probabilistic bor-
der P for a binary frame.

3.2 Upper probabilities

Another hint on the structure of S comes from the
particular relation of Bayesian belief functions with
the classical L; distance in the Euclidean space.

Let Cs denote the core of s, and define the following
order relation:

s>s' =s5(A) >s'(A) VACO.

Lemma 2. If s > s’ then C; C Cyr.

Proof. Obviously, since s(A) > s'(A) for every A C
O, that is true for Cy too, i.e. s(Cy) = 1 but then
Cs CCy. O

Theorem 2. If s : 2 — [0,1] is an arbitrary belief
function over a frame © then

lls =pll, = Y 1s(4) = p(A)| = cost = f(s)
ACO
for every Bayesian function p : 29 — [0, 1] which is
greater then s, i.e.

p(A) =Y p({6}) > s(4) vACe.
eA

Proof. Lemma 2 guarantees that C, C Cs, so that
p(A) —s(A) =1—-1=0for A D Cs. On the other
hand, if ANCs = 0 then p(4) —s(A) =0—-0 = 0.
What is left are sets corresponding to unions of non
empty proper subsets of Cs and arbitrary subsets of
O\ C,. Given A C C, there are 2/9\%| subsets of the
above type containing it, so that

> [s(A) = p(A)] = 21937 p(A) = D s(A)]
AC® ACC. ACC,
but then for Lemma 1

— 9lO\Cs |, [Q\Cs\—l —1-

> s(A)]

AcCc,



that is the size f(s) of the upper probability simplex
and is independent from p. O

A probability distribution satisfying the hypothesis of
Theorem 2 is said to be consistent with s ([9]). Ha et
al. ([7]) proved that the set P(s) of probability func-
tions consistent with a given b.f. s can be expressed
(in the probability simplex, not the belief space) as
the sum of the probability simplexes associated to its
focal elements A;, i = 1, ...,k of s, weighted by their
masses:

where conv(A;) is the convex closure of the probabil-
ities {Py|0 € A;} assigning 1 to an element of A;.

4 Bundle structure

These preliminary results suggest the belief space
should have the form of a simplex. A more detailed
description needs resorting to the axioms of basic
probability assignments (see Definition 1).

4.1 Moebius inversion lemma

Given a belief function s, the corresponding basic
probability assignment can be found by applying the
so-called Moebius inversion lemma

m(4) = Y (-1 Pls(B), (1)

BCA

that comes out from the structure of poset of power
sets. We can exploit it to determine whether a point
s € R2® corresponds to a belief function, by sim-
ply computing the b.p.a. and checking the axioms m
must obey.

The normalization constraint ) , g m(A) = 1 triv-
ially translates into S C {s : s(0©) = 1}. The positivity
condition is more interesting, for it originates an in-

equality resounding the third axiom of belief functions
([11], page 5). VA C ©:

$(A4) = X pca, Bj=jaj-1 5(B) + ..
c (D)ATBI p_ s(B) + (2)
e (DAY e 5({6)) > 0.

4.1.1 Example: ternary frame

Let us see the form of the belief space in a simple but
significant case: the ternary frame © = {6,6,,63}.
If we denote the coordinates with

z=s({01}), y = s({02}), z = s({0a}), u=s({01,02}),

v=s({01,03}), w=5({02,03})

the positivity constraint (2) can be rewritten as

| 1-(ut+v+w)+(x+y+2)>0

By combining the last equation in (3) with the others
we obtain

0<z+y+2<1, 0<ut+v+w<2
called k = x + y + z, it necessary follows that

2k<u+v4+w<1+k

u>(@+y), v>(r+z), w>(y+a2).

In other words, S reveals the structure of fiber bun-

A2
4
=P
x 41 1\y
A Y
2
R,
u <2 2\‘v

Figure 2: Decomposition of the belief space in the
ternary case.

dle, in which the variables z,y, z can move freely in
the unitary simplex, while the others are constrained
to stay in a tetrahedron Rp that depends on the sum
x+y+ 2=k (see Figure 3).

System (3) shows a natural symmetry that reflects the



intuitive partition of the variables in two sets, each as-
sociated to subsets of ©® with a same size, respectively
{z,y,2} ~|A| =1 and {u,v,w} ~ |A| = 2.

It is easy to see that the group of symmetry of S is
the permutation group S(3), acting onto {z,y, 2z} %
{u,v,w} by means of the correspondence

T W, Yyeou, zeu.

4.2 Convexity

All the constraints in Equation (2) defining S are of

the form
Z T; Z Z xj

i€EGy JEG2

where G; and G5 are two disjoint sets of coordinates,
as the above example confirms. As a straightforward
consequence,

Theorem 3. S is convez.

Proof. Let us take two points Py, P, € S and prove
that all the points of the segment Py+a (P —P), 0 <
a < 1, belong to S. Since Py, P, € S

0 0 1 1
> @) >y 2, Y @i > )
1€G1 JjEG2 1€G1 JjEG2

where 2V, z} are the i-th coordinates of Py, P respec-

tively, so that
ZiEGl ‘ria =

=Yica, T+ adY g, (wp — 1))

> icah (2] + oz —27)]

=(1=a)Yicq, o) +aXieq, ) >
>(1-0a)Ycq, ) +aXcq, T

= Yjele] +alzj — o] = jea, o5

O

It is well-known that belief functions are a special type
of coherent lower probabilities, that in turn can be
seen as a particular class of lower previsions (consult
[17], Section 5.13). Walley has proved that coherent
lower probabilities are closed under convex combina-
tion; this implies that convex combinations of belief
functions (completely monotone lower probabilities)
are still coherent. Theorem 3 is a stronger result,
stating that they are also completely monotone.

4.3 Symmetry

The above remark about the symmetry of the belief
space in Example 4.1.1 can be extended to the general

case of a finite n-dimensional frame © = {64, ...,6,}.
Let us establish for sake of simplicity the following
notation: z;z;...xx = s({6;,0;,...,01}).

Proposition 2. The general symmetry of the belief
space is described by the following logic expression

1<i,j<n k=1 {il,---,ik—l}c R o

C{L.,n}\ {i,j}

where \/(\) denotes the logical or (and), while <> in-
dicates the permutation of pairs of coordinates.

Proof. Let us rewrite the Moebius constraints, using
the above notation:

k—1
Tiy o Ty, > Z(_l)kiHl Z Tjp Ty
=1 {tsee st }C i1t}
Looking at the right side of the equation, it is clear
that only a permutation between coordinates associ-
ated to subsets of the same size may leave the in-
equality inalterate.
Given the triangular form of the system of inequali-
ties (the first group concerning variables of size 1, the
second one variables of size 1 and 2, and so on), per-
mutations among size k variables are always induced
by permutations of variables of smaller size. Hence
the symmetries of S are determined by permutations
of singletons. But such an exchange z; < z; deter-
mines a sequence of permutations among the coordi-
nates related to subsets containing 6; and 6;.
The resulting symmetry V; induced by z; < z; for
the k-th group of constraints is then

(Ii <~ Ij) VANRERIAY (xixil gy & TG ---Iik_l)

V{il, 'L.k—l} C {1, n} \ {’L]}
Since V}, is obviously implied by Vi1, and V,, is al-
ways trivial (as a simple check confirms), the overall
symmetry induced by a permutation of singletons is
determined by V,,_1, and by considering all the pos-
sible permutations z; <+ x; we have the thesis. O

In other words, the symmetry of S is determined by
the action of the permutation group S(n) over the
collection of the size 1 variables and the action of
S(n) naturally induced on the other variables

seSn): P(®) — P(0)

Tt Ty, > STy v ST,

where P, (©) is the class of the size k subsets of ©. It
is not difficult to recognize the symmetry properties
of a simplex, i.e. a collection [0y, ...,0,] of points in
the Euclidean space together with the sub-collections
(faces) [oi,, ..., 04,] of all the orders k < n.



4.4 Recursive bundle structure

The decomposition property shown in Example 4.1.1
is a hint of a general feature of the belief space: it can
be recursively decomposed into fibers parameterized
by the coordinates related to subsets A C © with a
same size. We first need some simple combinatorial
results.

Lemma 3.
k—1

N ) R ()]

m=l

Proof.
k-1

Z(fl)m_l(n — l)

o’ m — 1

Il
—
S
S
N
|
—
S
=
~
T

k= (141 n—l1
e (—1)R O >(k7(l+1)) -
(k—(@+1) 4.t (DU ) - (n—k+2)
(k—(+ 1)
The first two terms of the numerator have a common
factor and can be rewritten as —(k—(I+1))!-(n—1—1);
this in turn has in common (n—1—1)(k— (I +1))!/2!
with the third addendum giving (n — 1 — 1)(n — [ —
2)(k — (14 1))!/2! and so on. By iteration we get the

thesis. O
Theorem 4.
" n—(m+1)
_1\k—m+1 - .
‘Eksm) g1+m§::1( 1) ( R ) ‘B‘ijms(B).

Proof. Let us suppose we have assigned an amount
of mass to the subsets of size smaller than £k,
{m(B),|B| < k} with }_ 5, m(B) < 1. The maxi-
mum value of ) , s(A) corresponds to assigning the
remaining mass 13", 4, m(A) to the subsets of size
k. We obtain

1= mA)=1-> Y (-1 FlsB)

|A|<k |A|<k BCA

|[A|l=m=1|B|=Il=1

- kf i (_1)ml<:1‘_ll> Y s(B)

|[A|l=m=1|B|=Il=1 |B|=l

for (") is the number of subsets of size m containing
a fixed set B, |B| =l in a frame with n elements. This

can be rewritten as

-y (Zs(3>>-k21<—1>m_l<:z_—lz>

|B|=l=1 |B|=l m=l

that using Lemma 3 becomes
k—1
. n—(1+1)
1- () s(B)-(=n)F . (4)
B;—l BZ—Z <k -+ 1))

Now, if we write >, 4, s(4) =

- Y=Y

—1
mB)- () =
k-1
|A|l=k BCA I=1|B|=l

(since ({~}) is the number of size k subsets including
size i subsets)

= Y w43 () (2 mm)
|Bl=k =1 |B|=l

= Z m(B)+
\B|=k
k—1

by substituting to the first addendum Equation (4)
we get

k—1

S O -0 - ()

1=1 |B|=l

and by developing the pair of binomials we have the
thesis. O

Now, let us recall the notation used in Proposition 2.

Theorem 5. The belief space S has a recursive bun-
dle structure, i.e. it can be decomposed into the fol-
lowing sequence of domains

S 2 p)



where Sz,-,...,zz-l---zik is the section of the belief space
with z;, -+ x;; =cost ¥ {iy,...,i;} C{1,...,n}, Vj <k
(i.e. the set of all the possible belief functions whose
basic probability assignment m(A) is fized for |A| <
The i-th basis of S, D)
equations

, is defined by the following

i—m41
i—m—+ Z Ty T,

m<i {1, slm} C
C{k1,....k;}
p g = TS,
m<J {ll,...,lm} C
C{k1,.nks}
i-1 .
3 Tpy g, <1+ (=1)iTmEL
{k1,....ki} C m=t
C {1, .y}
— 1
{kls"'zkm} C
c {1,...,n}

with i < j <n. F9 is called the the i-th fiber of the
belief space, while p; is the projection map of the i-th
bundle level.

A
@)

0]

Figure 3: Pictorial representation of the bundle struc-
ture of the belief space.

Remark. Note that D' is (")-dimensional and is
parameterized by the variables xy, - - - ), associated
to the size i subsets of ©, since the values of the high-
order variables are bond to them by the second group
of equations.

Proof. (sketch) It suffices to observe that the first
group of constraints defining D*) summarizes the
Moebius inequalities for subsets of size i, while the
second one means that all the subsets with size greater
than 4 satisfy the Moebius formulae as equalities. The
second equation comes directly from Theorem 4. [
Remark. DU

= C1(0W, P®), where P is the

collection of belief functions assigning all the remain-
ing basic probability to subsets of size i, while O
assigns all the mass to 0.

Figure 3 summarizes our knowledge of the bundle
structure of the belief space. S can be decomposed
into a base D) (the simplex u = (z +y), v =
(z 4+ 2), w = (y + z) in Example 4.1.1) whose points
are glued to a fiber (Rp in the ternary case) whose
dimension reduces to zero at the upper border P()
of D), This decomposition recursively applies to the
fibers, for i = 1,...,n — 1.

It is interesting to point out that the elements of
this decomposition have an intuitive meaning. For
instance, P(1) = P is the set of the Bayesian belief
functions, while D) coincides to the collection of the
discounted probabilities (see [11]).

5 Simplicial form of the belief space

The bundle structure of the belief space introduced
above coexists with a simpler representation, resound-
ing the polytope-like description of the set of proba-
bility distributions on a given domain ([7]).

Definition 6. The set H@  of the pseudo-
probabilities of order i is the collection of belief func-
tions assigning all the basic probability to subsets of
size 1.

Theorem 6. Fvery belief function s € S can
be uniquely expressed as a convexr combination of
pseudo-probabilities of all the orders,

s = Zam(i), Zai =1, 7 eI,
i=1 i=0
Proof.
s=(>_ m(B), ACO) Z Z m(B), AcC o)
BCA i=1 A, B
but then
s =( > m(B), AC0)
BCA,|B|=i

is an unnormalized belief function assigning all the
mass to subsets of size i.

By defining (9 = ‘5(1)

607 we can write

s = i ||5(i)||7r(i) = iam(i)
i=1 i=1

with S0 a; = ST [|6(]] = 1 for the normalization
constraint. Obviously 7(*) e (), O

Not surprisingly, II(0) = Péi).
This convex decomposition property can be easily
generalized in the following way.



Theorem 7. The set of all the belief functions with
focal elements in a given collection X is closed and
convez in S, namely

{s:A€&=>AcX}=Cl{Pa: A X})

where P4 is the pseudo-probability assigning all the
mass to A, mp, (A) = 1.

Proof. By definition {s: A €& => A€ X} =

={s:s=( Z

BCA,BEE,

m(B)),& C X}

but

s= Z m(B) - (xa=1,ADB;z4=0,4A 2 B)
Beé&,

and (x4 =1,A D B;x4 =0,A % B) = Pg, so that

s= Y m(B)Pg= Y m(B)Ps

Beé&, BeX

by extending m to the elements B € X \ &, as
m(B) = 0. Since m is a basic probability assignment,
Y Bex M(B) = 1 and the thesis follows. O

Corollary 2. 1) = CI({Pg, |B| =1i}).

Corollary 3. The belief space S coincides to the con-
vex closure of all the pseudo-probabilities of every or-
der,

S=CI,.., I"1,0) = CI(P}, ..., PL,...,Pn1, 0).

The above result (that can be obtained directly from
Theorem 7) confirms our conjecture about the nature
of simplex of the belief space induced by the symmetry
analysis of Paragraph 4.3.

6 Commutativity

Once established the geometrical properties of the be-
lief functions, it is natural to wonder what is the be-
haviour of the rule of combination in the framework
of the belief space.

Theorem 8. Cl and & commute, i.e. if s is combin-
able with s;, Yi = 1,...,n then

5D Cl({sl}: HEE) {Sn}) = Ol({S D 81}7 HEE) {S D Sn})a

in other words

s@Zaisi:Zai(s@si), Zaizl.

Remark. Being S convex, if s; € S Vithen ), a;s; €
S when )", a; = 1.

Proof. Let us first compute the basic probability as-
signment associated to >, a;s;, by means of the Moe-
bius inversion formula (1). If by hypothesis s(B) =
>, @;si(B) then

my . a;s; (4) = ZBcA(_l)‘AiB‘ Zz a;s;{(B) =

> Y pea(=D)A7Blsi(B) = 3, aimi(A).

Now, being >, a;s; € S for the above remark, we
must check if it combinable with with s, obtaining
s® Y, a;s;. Called & the collection of focal elements
of a belief function s, we have

521. ais; — U Esi; (5)
i #0

if a; # 0V i this reduces to s 4,5, = J&s;. This
way if s is combinable with some s; (even only one of
them) then it is combinable with ), a;s;.

Let us call Ay,..., A, the focal elements of )", a;s;
and By, ..., By, those of s. The f.e. of s&® >, a;s; are

U gs@si

for all the intersections are considered, but Prop-
erty (5) gives exactly the same result for the f.e. of
> ;ai(s @ s;). Hence, we have to check the corre-
sponding basic probability assignments: for the latter
we have, denoting with {E}} the focal elements of s;,

My, a;sds; (A) = ZBCA(_l)‘A_B‘ > ai(s @ si)(B)

= Zz Q5 ZBcA(_l)‘AiB‘(S © 5i)(B) =

Z ms, (Ek)mS(Bj)

EyNB;=A

> imsgs, (A) =32, o

1- Z msg; (Ek)ms(B]’)

Ey ﬁBj:@

while, for s & ), ays;,

Z my, Oéisi(Ak)mS(Bj)

sB) ; aisi -
1- Z my, a;s; (Ak)ms(Bj)
ArNB;=0
Y O aimg, (Ay)) -ms(By)
_ AkﬁBj:A i
1— > O cimg, (Ar)) - my(B))
AkﬁBj:@ i
doai D> m(Amg(By)
i ArNB;=A

TS ai- S (X aima(Ar) - ma(B))

i AkﬂB]‘:@ i



Zai- > mg (A)ma(B;)

Ay ﬁBj:A

T = Y me(Agmi(B))

AkﬂszfD
_ ZO[' ZAkmBj:A msi(Ak)ms(B]')
i fl- ZAmBJ-:m ms, (Ar)ms(Bj)

Since for Ay & &, the addenda vanish, we remain for
each 7 with the focal elements of s;:

ZO[' ZEkmBj:A msi(Ek)ms(Bj)
p 11— ZEkmBj:(Z) Mms; (Ek)mS(Bj)’

Ey € 5si-

O

The fact that the orthogonal sum and convex closure
operators commute is a powerful tool. It provides a
simple language that allows us to give geometric in-
terpretations of the notions of combinability and con-
ditioning.

7 Conditional subspaces

Definition 7. The conditional subspace (s) is the
set of all the belief functions conditioned by a given
function s, namely

(s) ={sdt, teS st Isdt}. (6)

Since not every belief function is combinable with
an arbitrary s, we need to understand the geometric
structure of combinable functions.

Definition 8. The non-combinable subspace NC(s)
associated to a belief function s is the collection of all
the b.f.s not combinable with s,

NC(s) = {s":Bs' & s}.
Proposition 3. NC(s) = Cl({Pa: ANCs =0}).

Proof. It suffices to point out that NC(s) = {s' :
Csy CCst={s":ACCs VA€ Cy}. Hence we can
apply Theorem 7 and the thesis follows. O

The dimension of NC(s) is obviously 2/©\¢:| — 2,
Using the definition of non-combinable subspace we
can write (s) = s®(S\NC(s)) = s®{s' : CsNCs # 0}.
Unfortunately, the last expression does not seem to
satisfy Theorem 7: for a b.f. s’ to be compatible with
s it suffices to have one focal element intersecting the
core Cy, not all of them.

Definition 9. The compatible subspace C(s) asso-
ciated to a belief function s is the collection of all the
b.f.s with focal elements included into the core of s:

C(s) = {s': Cy C Cy).

From Theorem 7 it follows that
Corollary 4. C(s) = ClI({P4 : A C Cs}).

The compatible space C(s) is only a proper subset of
the collection of belief functions combinable with s,
S\ NC(s): nevertheless, it contains all the relevant
information. In fact,

Theorem 9. (s) = s @ C(s).

Proof. Let us denote with £ = {4;} and & = {B;}
the focal elements of s’ and s respectively. Obviously
Bj ﬂAi = Bj ﬂAiﬂCs = Bj ﬂ(AiﬂCs) so that deﬁning
anew b.f. s with focal elements

A; = A, NC,

and basic probability assignment m’ (A;) = m'(4;)
we have s Bs' =sDs . O

Now we are ready to formulate the geometric descrip-
tion of conditional subspaces. From Theorem 7 and 9
it comes directly

Corollary 5. (s) = Ci({s® Pa, A C Cs}).

Note that s & Pe, = s, hence s is always a vertex of
(s). Of course (s) C C(s), since the core is a monotone
function on the poset (S, >g). Furthermore

dim((s)) = 2/¢ —2 (7)

for the dimension of (s) is simply the cardinality of
C(s) (note that @ is not included) minus 1.
We can observe that

dim(NC(s)) + dim({s)) # dim(S).

Corollary 5 depicts, in a sense, the global action of the
orthogonal sum in the belief space. In [2] we started to
analyze the pointwise behavior of Dempster’s rule in
S, and its relation with the polytopes of probabilities
consistent with the belief functions to combine.

8 Conclusions and perspectives

The geometric analysis exposed above is still at its ini-
tial stage, even if some interesting results have been
achieved. We now have a picture of the behavior of be-
lief functions as geometrical objects, but many ques-
tions still need to be addressed.

Some work has already been done on probabilistic
([12], [16]) and possibilistic ([5]) approximations of
belief functions. For instance, F. Voorbraak proposed
the following Bayesian approximation:

> 5>am(B)

Socomoyep Al=1

m(A) =

0 otherwise



Nevertheless, we think that the geometric framework
of the belief space could be the right context in which
to pose and then solve the problem. Since a belief
function is useful only when it is combined with oth-
ers in an automated reasoning process, we can claim
that a good approximation, when combined with any
other belief function, produces results similar to what
obtained by combining the original function. Analyti-
cally,

§=arg min/ dist(s ® t,s' @ t)dt (8)
s'€C Jieo(s)

where dist is one of the classical L, distance func-
tions, and C is the class of belief functions where the
approximation must belong. It can be proved (see [2]
again) that for the simplest (binary) frame,

Proposition 4. For every belief function s € So, the
probabilistic approzimation induced by the cost func-
tion (8) is unique, and corresponds to the normalized
plausibility of singletons for every arbitrary choice of
the distance function L, Vp.

This suggests that the optimal approximation can be
computed in closed form. Furthermore, the proposed
criterion has a general scope, rests on intuitive prin-
ciples and could be adopted to solve a wide number
of problems.

On the other side, it is easy to see that, given the
shape of conditional subspaces proved in Theorem 9,
the simple components (ej,es) of an arbitrary sepa-
rable support function s in Sy can be expressed as

e; = Cl(S s @ Pz) N CZ(O,PZ) = Cl(SPZ) N Cl(OPZ)

Hence it seems likely that the language we introduced,
based on the two operators of convex closure and or-
thogonal sum, could be powerful enough to provide a
general solution to the canonical decomposition prob-
lem, alternative to Smets’ ([13]) and Kramosil’s ([8])
ones.
The lack of an evidential analogous of the notion of
random process is perhaps one of the major draw-
backs of the theory of evidence (as we mentioned in
the Introduction) preventing a wider application to
engineering problems. The knowledge of the geomet-
rical form of conditional subspaces could be useful to
predict the behavior of the series of belief functions
lim (s ®--- @ sp)
n— o0
and their asymptotic properties.
In conclusion, we can argue that even if the geomet-
rical analysis of the space of the belief functions was
originally motivated by the approximation problem
its potential applications are far more extended, and
deserve further attentions.
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