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AbstratIn this paper the geometri struture of the spae S�of the belief funtions de�ned over a disrete set � (be-lief spae) is analyzed. Using the Moebius inversionlemma we prove the reursive bundle struture of thebelief spae and show how an arbitrary belief funtionan be uniquely represented as a onvex ombinationof ertain elements of the �bers, giving S the form ofa simplex.The ommutativity of orthogonal sum and onvex lo-sure operator is proved and used to depit the geomet-ri struture of onditional subspaes, i.e. sets of belieffuntions onditioned by a given funtion s. Futureappliations of these geometri methods to lassialproblems like probabilisti approximation and anon-ial deomposition are outlined.Keywords. Theory of evidene, belief spae, �berbundle, onvex deomposition, ommutativity, ondi-tional subspae.1 IntrodutionEvidential reasoning is beoming a useful tool for solv-ing important engineering problems. Computer vi-sion, among the others, is an exiting �eld in whihvery diÆult problems are solved by means of a widespetrum of mathematial tools, ranging from di�er-ential geometry to statistis, to logi. When one triesand apply the theory of evidene to lassial visionproblems a number of important question arises.Objet traking, for instane, onsists on estimatingat eah time instant the urrent on�guration of anartiulated objet from a sequene of images of themoving body. In a reent work of ours ([3℄), imagefeatures are represented as belief funtions and om-bined to produe an estimate of the pose q̂(t) 2 ~Q,where ~Q is a \good" �nite approximation of the pa-rameter spae Q of the objet.A method for deriving a pointwise estimate from thebelief funtion emerging from the ombination is then

needed, for example by hoosing the \best" proba-bilisti approximation of the belief estimate and om-puting the orresponding expeted pose. Note thatthis is not a deision problem, and the most aurateestimate of the real vetor q is desired.Another interesting task (data assoiation, [2℄) on-sists on reonstruting the assoiation between mov-ing points appearing in onseutive images of a se-quene. When one supposes these points belongingto an artiulated body whose topologial model isknown, the rigid motion onstraint an be used inorder to ahieve the desired orrespondene. Sinethis onstraint must be expressed in onditional way,the idea of ombination of onditional belief funtions(see [2℄, Chapter 7) in a �lter-like proess has to beaddressed.In this work we introdue a geometri formulation ofthe basis onepts of the theory of evidene, as anenvironment where at least some of the above prob-lems an �nd a satisfatory solution. A entral roleis played by the notion of belief spae S, introduedin Setion 3, while in Setion 4 the Moebius inver-sion lemma is exploited to investigate its onvexityand symmetry. With the aid of some ombinatorialresults, the reursive bundle struture of S is provedand an interpretation of its omponents (bases and�bers) in term of lasses of b.f.s is provided.Next, we haraterize the relation between foal ele-ments and the onvex losure operator, and show inpartiular how every belief funtion an be uniquelydeomposed as a onvex ombination of pseudo-probabilities, giving S the form of a simplex. In Se-tion 6 the behavior of Dempster's rule of ombina-tion within this geometri framework is analyzed, byproving that the orthogonal sum ommutes with theonvex losure operator. This allows us to give a ge-ometri desription in term of subspaes of the ol-letions of belief funtions ombinable with a givenb.f. s, and the set of belief funtions obtainable froms by means of ombination of new evidene (ondi-tional subspae).



Finally, some hints of the potential appliations of thisformalism are given.1.1 Previous workIn a reent paper [7℄, Ha and Haddawy exploit meth-ods of onvex geometry to represent probability inter-vals in a omputationally eÆient fashion, by meansof a data struture alled p-tree, founded on a gen-eralization of the onvex losure alled -operator.They show that belief funtions an be representedby 2-level p-trees and study the evidential updat-ing in this ontext.On the other side, a number of papers have been pub-lished on approximation of belief funtions (see [1℄ fora review), mainly in order to �nd eÆient implemen-tations of the rule of ombination aiming to reduethe number of foal elements. Tessem ([15℄) inor-porates only the highest-valued foal elements in hismklx approximation; a similar approah inspires thesummarization tehnique formulated by Lowrane etal. ([10℄).About onditional belief funtions, Fagin and Halpern([6℄) formulate a de�nition based on inner measures,as lower envelope of a family of onditional probabilityfuntions, and provide a losed-form expression for it.M. Spies ([14℄) establishes a link between onditionalevents and disrete random sets, de�ning onditionalevents as sets of equivalent events under the ondi-tioning relation. By applying to them a multivaluedmapping ([4℄), he de�nes onditional belief funtionsand introdues an updating rule (that is equivalent tothe law of total probability is all beliefs are probabil-ities).2 Belief funtionsFollowing Shafer [11℄ we all a �nite set of possibilitiesframe1of disernment (FOD).De�nition 1. A basi probability assignment(b.p.a.) over a FOD � is a funtion m : 2� ! [0; 1℄suh thatm(;) = 0; m(A) � 0 8 A � �; XA��m(A) = 1:The elements of 2� assoiated to non-zero values ofm are alled foal elements and their union ore. Nowsuppose a b.p.a. is introdued over an arbitrary FOD.De�nition 2. The belief funtion Bel assoiated toa basi probability assignment m is de�ned as:Bel(A) = XB�Am(B):

An alternative de�nition of belief funtions an begiven independently from the presene of a basi prob-ability assignment (see [11℄).Belief funtions representing distint bodies of evi-dene are ombined by means of the Dempster's ruleof ombination.De�nition 3. the orthogonal sum Bel1�Bel2 of twobelief funtions is a funtion whose foal elements areall the possible intersetions between the ombiningfoal elements and whose b.p.a. is given bym(A) = Xi;j:Ai\Bj=Am1(Ai)m2(Bj)1� Xi;j:Ai\Bj=;m1(Ai)m2(Bj) :The normalization onstant in the above expressionmeasures the level of onit between belief funtionsfor it represents the amount of probability they at-tribute to ontraditory (i.e. disjoint) subsets.Dempster's rule is easily extended to the ombinationof several belief funtions.In the theory of evidene a probability funtion is sim-ply a peuliar belief funtion satisfying the additivityrule for disjoint sets.De�nition 4. A Bayesian belief funtion assigns ba-si probabilities only to singletons � 2 � of the under-lying frame: m(A) = 0 8 A s:t: jAj > 1.It an be proved thatProposition 1. A funtion Bel is Bayesian , 9 p :�! [0; 1℄ suh thatX�2� p(�) = 1; Bel(A) =X�2A p(�) 8A � �:3 Belief spaeConsider a frame of disernment � and introdue inthe Eulidean spae Rj2�j an orthonormal refereneframe fxigi=1;:::;j2�j in whih, given an arbitrary or-dering in 2�, eah oordinate funtion xi measuresthe value of belief assoiated to a the i-th subset of �.De�nition 5. The belief spae assoiated to � isthe set of points S of Rj2�j orresponding to a belieffuntion.3.1 Limit simplexThe properties of Bayesian belief funtions an be use-ful to have a �rst idea of the shape of the belief spae.Lemma 1. If p is a Bayesian belief funtion over aframe � and B an arbitrary subset of �XA�B p(A) = 2jBj�1 � P (B):



Proof. The sum an be rewritten as P�2B k�p(�)where k� is the number of subsets of B ontaining�. But k� = 2jBj�1 for eah singleton, so thatXA�B p(A) = 2jBj�1 �X�2B p(�) = 2jBj�1 � P (B):As a onsequene all the Bayesian funtions are on-strained to belong to a well-determined region of thebelief spae.Corollary 1. The set P of all the Bayesian belieffuntions with domain � is inluded into the j�j � 1-dimensional simplexL = fs s:t: XA�� s(A) = 2j�j�1gof the j�j-dimensional belief spae S, alled limit sim-plex.Theorem 1. The set of all the belief funtions overa frame � is a subset of the region delimited by thelimit simplex L: XA�� s(A) � 2j�j�1where the equality holds i� s is Bayesian.Proof. The sum an be written asfXi=1 ai �m(Ai)where f is the number of foal elements of s and aiis the number of subsets of � inluding the ith foalelement Ai, namely ai = jfB � � s:t: B � Aigj.Obviously ai = 2j�nAj � 2j�j�1 and the equality holdsi� jAj = 1. ThenXA�� s(A) = fXi=1 m(Ai) � 2j�j�1= 2j�j�1 � fXi=1 m(Ai) = 2j�j�1 � 1 = 2j�j�1i� jAij = 1 for every foal element of s, i.e. s isBayesian.It is important to point out that P in general doesnot sell out the limit simplex L. At the same timethe belief spae generally does not oinide with theentire region bounded by L, as is shown by the pitureof the belief spae S2 assoiated to a binary frame.Example. Suppose � = f�1; �2g: we have P = L \fs : s(�) = 1g and the belief spae has the formillustrated in Figure 1.

Figure 1: The belief spae S and its probabilisti bor-der P for a binary frame.3.2 Upper probabilitiesAnother hint on the struture of S omes from thepartiular relation of Bayesian belief funtions withthe lassial L1 distane in the Eulidean spae.Let Cs denote the ore of s, and de�ne the followingorder relation:s � s0 � s(A) � s0(A) 8A � �:Lemma 2. If s � s0 then Cs � Cs0 .Proof. Obviously, sine s(A) � s0(A) for every A ��, that is true for Cs0 too, i.e. s(Cs0) = 1 but thenCs � Cs0 .Theorem 2. If s : 2� ! [0; 1℄ is an arbitrary belieffuntion over a frame � thenks� pkL1 = XA�� js(A)� p(A)j = ost = f(s)for every Bayesian funtion p : 2� ! [0; 1℄ whih isgreater then s, i.e.p(A) =X�2A p(f�g) � s(A) 8A � �:Proof. Lemma 2 guarantees that Cp � Cs, so thatp(A) � s(A) = 1 � 1 = 0 for A � Cs. On the otherhand, if A \ Cs = ; then p(A) � s(A) = 0 � 0 = 0.What is left are sets orresponding to unions of nonempty proper subsets of Cs and arbitrary subsets of� n Cs. Given A � Cs there are 2j�nCsj subsets of theabove type ontaining it, so thatXA�� js(A) � p(A)j = 2j�nCsj � [XA�Cs p(A)� XA�Cs s(A)℄but then for Lemma 1= 2j�nCsj � [2jCsj�1 � 1� XA�Cs s(A)℄



that is the size f(s) of the upper probability simplexand is independent from p.A probability distribution satisfying the hypothesis ofTheorem 2 is said to be onsistent with s ([9℄). Ha etal. ([7℄) proved that the set P (s) of probability fun-tions onsistent with a given b.f. s an be expressed(in the probability simplex, not the belief spae) asthe sum of the probability simplexes assoiated to itsfoal elements Ai; i = 1; :::; k of s, weighted by theirmasses: P (s) = kXi=1m(Ai)onv(Ai)where onv(Ai) is the onvex losure of the probabil-ities fP�j� 2 Aig assigning 1 to an element of Ai.4 Bundle strutureThese preliminary results suggest the belief spaeshould have the form of a simplex. A more detaileddesription needs resorting to the axioms of basiprobability assignments (see De�nition 1).4.1 Moebius inversion lemmaGiven a belief funtion s, the orresponding basiprobability assignment an be found by applying theso-alled Moebius inversion lemmam(A) = XB�A(�1)jA�Bjs(B); (1)that omes out from the struture of poset of powersets. We an exploit it to determine whether a points 2 Rj2�j orresponds to a belief funtion, by sim-ply omputing the b.p.a. and heking the axioms mmust obey.The normalization onstraint PA��m(A) = 1 triv-ially translates into S � fs : s(�) = 1g. The positivityondition is more interesting, for it originates an in-equality resounding the third axiom of belief funtions([11℄, page 5). 8A � �:s(A) �PB�A;jBj=jAj�1 s(B) + ::::::+ (�1)jA�BjPjBj=k s(B) + ::::::+ (�1)jAj�1P�2� s(f�g) � 0: (2)4.1.1 Example: ternary frameLet us see the form of the belief spae in a simple butsigni�ant ase: the ternary frame � = f�1; �2; �3g.If we denote the oordinates with

x = s(f�1g); y = s(f�2g); z = s(f�3g); u = s(f�1; �2g);v = s(f�1; �3g); w = s(f�2; �3g)the positivity onstraint (2) an be rewritten asS : 8>>>>>>>><>>>>>>>>:
x � 0; u � (x+ y)y � 0; v � (x+ z)z � 0; w � (y + z)1� (u+ v + w) + (x+ y + z) � 0 (3)By ombining the last equation in (3) with the otherswe obtain0 � x+ y + z � 1; 0 � u+ v + w � 2;alled k = x+ y + z, it neessary follows that2k � u+ v + w � 1 + ku � (x+ y); v � (x+ z); w � (y + z):In other words, S reveals the struture of �ber bun-

Figure 2: Deomposition of the belief spae in theternary ase.dle, in whih the variables x; y; z an move freely inthe unitary simplex, while the others are onstrainedto stay in a tetrahedron RP that depends on the sumx+ y + z = k (see Figure 3).System (3) shows a natural symmetry that reets the



intuitive partition of the variables in two sets, eah as-soiated to subsets of � with a same size, respetivelyfx; y; zg � jAj = 1 and fu; v; wg � jAj = 2.It is easy to see that the group of symmetry of S isthe permutation group S(3), ating onto fx; y; zg �fu; v; wg by means of the orrespondenex$ w; y $ v; z $ u:4.2 ConvexityAll the onstraints in Equation (2) de�ning S are ofthe form Xi2G1 xi � Xj2G2 xjwhere G1 and G2 are two disjoint sets of oordinates,as the above example on�rms. As a straightforwardonsequene,Theorem 3. S is onvex.Proof. Let us take two points P0; P1 2 S and provethat all the points of the segment P0+�(P1�P0); 0 �� � 1, belong to S. Sine P0; P1 2 SXi2G1 x0i � Xj2G2 x0j ; Xi2G1 x1i � Xj2G2 x1jwhere x0i ; x1i are the i-th oordinates of P0; P1 respe-tively, so thatPi2G1 x�i =Pi2G1 [x0i + �(x1i � x0i )℄=Pi2G1 x0i + �Pi2G1(x1i � x0i )= (1� �)Pi2G1 x0i + �Pi2G1 x1i �� (1� �)Pj2G2 x0j + �Pj2G2 x1j=Pj2G2 [x0j + �(x1j � x0j )℄ =Pj2G2 x�j :It is well-known that belief funtions are a speial typeof oherent lower probabilities, that in turn an beseen as a partiular lass of lower previsions (onsult[17℄, Setion 5.13). Walley has proved that oherentlower probabilities are losed under onvex ombina-tion; this implies that onvex ombinations of belieffuntions (ompletely monotone lower probabilities)are still oherent. Theorem 3 is a stronger result,stating that they are also ompletely monotone.4.3 SymmetryThe above remark about the symmetry of the beliefspae in Example 4.1.1 an be extended to the general

ase of a �nite n-dimensional frame � = f�1; :::; �ng.Let us establish for sake of simpliity the followingnotation: xixj :::xk := s(f�i; �j ; :::; �kg).Proposition 2. The general symmetry of the beliefspae is desribed by the following logi expression_1�i;j�n n�1̂k=1 ^fi1; :::; ik�1g �� f1; :::; ng n fi; jg xixi1 � � �xik�1lxjxi1 � � �xik�1where W(V) denotes the logial or (and), while $ in-diates the permutation of pairs of oordinates.Proof. Let us rewrite the Moebius onstraints, usingthe above notation:xi1 � � �xik � k�1Xl=1(�1)k�l+1 Xfj1;:::;jlg�fi1;:::;ikgxj1 � � �xjlLooking at the right side of the equation, it is learthat only a permutation between oordinates assoi-ated to subsets of the same size may leave the in-equality inalterate.Given the triangular form of the system of inequali-ties (the �rst group onerning variables of size 1, theseond one variables of size 1 and 2, and so on), per-mutations among size k variables are always induedby permutations of variables of smaller size. Henethe symmetries of S are determined by permutationsof singletons. But suh an exhange xi $ xj deter-mines a sequene of permutations among the oordi-nates related to subsets ontaining �i and �j .The resulting symmetry Vk indued by xi $ xj forthe k-th group of onstraints is then(xi $ xj) ^ � � � ^ (xixi1 � � �xik�1 $ xjxi1 � � �xik�1)8fi1; :::; ik�1g � f1; :::; ng n fi; jg:Sine Vk is obviously implied by Vk+1, and Vn is al-ways trivial (as a simple hek on�rms), the overallsymmetry indued by a permutation of singletons isdetermined by Vn�1, and by onsidering all the pos-sible permutations xi $ xj we have the thesis.In other words, the symmetry of S is determined bythe ation of the permutation group S(n) over theolletion of the size 1 variables and the ation ofS(n) naturally indued on the other variabless 2 S(n) : Pk(�) ! Pk(�)xi1 � � �xik 7! sxi1 � � � sxikwhere Pk(�) is the lass of the size k subsets of �. Itis not diÆult to reognize the symmetry propertiesof a simplex, i.e. a olletion [�1; :::; �n℄ of points inthe Eulidean spae together with the sub-olletions(faes) [�i1 ; :::; �ik ℄ of all the orders k � n.



4.4 Reursive bundle strutureThe deomposition property shown in Example 4.1.1is a hint of a general feature of the belief spae: it anbe reursively deomposed into �bers parameterizedby the oordinates related to subsets A � � with asame size. We �rst need some simple ombinatorialresults.Lemma 3.k�1Xm=l(�1)m�l�n� lm� l� = (�1)k�l+1�n� (l + 1)k � (l + 1)�:Proof.k�1Xm=l(�1)m�l�n� lm� l� = �n� l0 �� �n� l1 �+ ::::::+ (�1)k�(l+1)� n� lk � (l + 1)� == (k � (l + 1))! + :::+ (�1)k�(l+1)(n� l) � ::: � (n� k + 2)(k � (l + 1))!The �rst two terms of the numerator have a ommonfator and an be rewritten as�(k�(l+1))!�(n�l�1);this in turn has in ommon (n� l� 1)(k� (l+1))!=2!with the third addendum giving (n � l � 1)(n � l �2)(k � (l+ 1))!=2! and so on. By iteration we get thethesis.Theorem 4.XjAj=k s(A) � 1 + k�1Xm=1(�1)k�m+1�n� (m + 1)k �m � � XjBj=m s(B):Proof. Let us suppose we have assigned an amountof mass to the subsets of size smaller than k,fm(B); jBj < kg with PjBj<km(B) < 1. The maxi-mum value of PA s(A) orresponds to assigning theremaining mass 1�PjAj<km(A) to the subsets of sizek. We obtain1� XjAj<km(A) = 1� XjAj<k XB�A(�1)jA�Bjs(B)= 1� k�1XjAj=m=1 mXjBj=l=1(�1)m�ls(B)= 1� k�1XjAj=m=1 mXjBj=l=1(�1)m�l�n� lm� l� � XjBj=l s(B)for �n�lm�l� is the number of subsets of sizem ontaininga �xed set B; jBj = l in a frame with n elements. Thisan be rewritten as1� k�1XjBj=l=1(XjBj=l s(B)) � k�1Xm=l(�1)m�l�n� lm� l�

that using Lemma 3 beomes1� k�1XjBj=l=1(XjBj=l s(B)) � (�1)k�l+1�n� (l + 1)k � (l + 1)�: (4)Now, if we write PjAj=k s(A) == XjAj=k XB�Am(A) = kXl=1 XjBj=lm(B) � �n� lk � l� =(sine �n�lk�l� is the number of size k subsets inludingsize i subsets)= XjBj=km(B) + k�1Xl=1 �n� lk � l� � (XjBj=lm(B))= XjBj=km(B)++ k�1Xl=1 �n� lk � l� � [ lXm=1(�1)l�m�n�ml �m� XjBj=m s(B)℄= XjBj=km(B) + k�1Xl=1(�1)k�l�1�n� lk � l� XjBj=l s(B);by substituting to the �rst addendum Equation (4)we get= 1 + k�1Xl=1(�1)k�l�1 � ( XjBj=l s(B)) � [�n� lk � l�� �n� (l + 1)k � (l + 1)�℄and by developing the pair of binomials we have thethesis.Now, let us reall the notation used in Proposition 2.Theorem 5. The belief spae S has a reursive bun-dle struture, i.e. it an be deomposed into the fol-lowing sequene of domainsS p1�! D(1);F (1) := p�11 (x1; :::; xn) = SxiF (1) p2�! D(2);F (2) := p�12 (x1x2; :::; xn�1xn)) = Sxi;xixj� � �F (n�2) pn�1�! D(n�1);F (n�1) := p�1n�1(x1 � � �xn�1; :::; x2 � � �xn)) == Sxi;:::;xi1 ���xin�1



where Sxi;:::;xi1 ���xik is the setion of the belief spaewith xi1 � � �xij =ost 8 fi1; :::; ijg � f1; :::; ng; 8j � k(i.e. the set of all the possible belief funtions whosebasi probability assignment m(A) is �xed for jAj �k).The i-th basis of S, D(i), is de�ned by the followingequationsxk1 � � �xki � Xm<i(�1)i�m+1 Xfl1; :::; lmg �� fk1; :::; kig xl1 � � �xlmxk1 � � �xkj = Xm<j(�1)j�m+1 Xfl1; :::; lmg �� fk1; :::; kjg xl1 � � �xlmXfk1; :::; kig �� f1; :::; ng xk1 � � �xki � 1 + i�1Xm=1(�1)i�m+1 ���n� (m+ 1)i�m � � Xfk1; :::; kmg �� f1; :::; ng xk1 � � �xkmwith i < j � n. F (i) is alled the the i-th �ber of thebelief spae, while pi is the projetion map of the i-thbundle level.

Figure 3: Pitorial representation of the bundle stru-ture of the belief spae.Remark. Note that D(i) is �ni�-dimensional and isparameterized by the variables xk1 � � �xki assoiatedto the size i subsets of �, sine the values of the high-order variables are bond to them by the seond groupof equations.Proof. (sketh) It suÆes to observe that the �rstgroup of onstraints de�ning D(i) summarizes theMoebius inequalities for subsets of size i, while theseond one means that all the subsets with size greaterthan i satisfy the Moebius formulae as equalities. Theseond equation omes diretly from Theorem 4.Remark. D(i) = Cl(O(i); P (i)), where P (i) is the

olletion of belief funtions assigning all the remain-ing basi probability to subsets of size i, while O(i)assigns all the mass to �.Figure 3 summarizes our knowledge of the bundlestruture of the belief spae. S an be deomposedinto a base D(1) (the simplex u = (x + y); v =(x + z); w = (y + z) in Example 4.1.1) whose pointsare glued to a �ber (RP in the ternary ase) whosedimension redues to zero at the upper border P(1)of D(1). This deomposition reursively applies to the�bers, for i = 1; :::; n� 1.It is interesting to point out that the elements ofthis deomposition have an intuitive meaning. Forinstane, P(1) = P is the set of the Bayesian belieffuntions, while D(1) oinides to the olletion of thedisounted probabilities (see [11℄).5 Simpliial form of the belief spaeThe bundle struture of the belief spae introduedabove oexists with a simpler representation, resound-ing the polytope-like desription of the set of proba-bility distributions on a given domain ([7℄).De�nition 6. The set �(i) of the pseudo-probabilities of order i is the olletion of belief fun-tions assigning all the basi probability to subsets ofsize i.Theorem 6. Every belief funtion s 2 S anbe uniquely expressed as a onvex ombination ofpseudo-probabilities of all the orders,s = nXi=1 �i�(i); nXi=0 �i = 1; �(i) 2 �(i):Proof.s = (XB�Am(B); A � �) = nXi=1( XB�A;jBj=im(B); A � �)but then Æ(i) := ( XB�A;jBj=im(B); A � �)is an unnormalized belief funtion assigning all themass to subsets of size i.By de�ning �(i) := Æ(i)kÆ(i)k we an writes = nXi=1 kÆ(i)k�(i) = nXi=1 �i�(i)withPni=1 �i =Pni=1 kÆ(i)k = 1 for the normalizationonstraint. Obviously �(i) 2 �(i).Not surprisingly, �(i) = P (i)0 .This onvex deomposition property an be easilygeneralized in the following way.



Theorem 7. The set of all the belief funtions withfoal elements in a given olletion X is losed andonvex in S, namelyfs : A 2 Es ) A 2 Xg = Cl(fPA : A 2 Xg)where PA is the pseudo-probability assigning all themass to A, mPA(A) = 1.Proof. By de�nition fs : A 2 Es ) A 2 Xg == fs : s = ( XB�A;B2Esm(B)); Es � Xgbuts = XB2Esm(B) � (xA = 1; A � B;xA = 0; A 6� B)and (xA = 1; A � B;xA = 0; A 6� B) := PB , so thats = XB2Esm(B)PB = XB2Xm(B)PBby extending m to the elements B 2 X n Ex asm(B) = 0. Sine m is a basi probability assignment,PB2X m(B) = 1 and the thesis follows.Corollary 2. �(i) = Cl(fPB ; jBj = ig).Corollary 3. The belief spae S oinides to the on-vex losure of all the pseudo-probabilities of every or-der,S = Cl(�1; :::;�n�1; 0) = Cl(P 11 ; :::; P 1n ; :::; Pn�1x ; 0):The above result (that an be obtained diretly fromTheorem 7) on�rms our onjeture about the natureof simplex of the belief spae indued by the symmetryanalysis of Paragraph 4.3.6 CommutativityOne established the geometrial properties of the be-lief funtions, it is natural to wonder what is the be-haviour of the rule of ombination in the frameworkof the belief spae.Theorem 8. Cl and � ommute, i.e. if s is ombin-able with si; 8i = 1; :::; n thens� Cl(fs1g; :::; fsng) = Cl(fs� s1g; :::; fs� sng);in other wordss�Xi �isi =Xi �i(s� si); Xi �i = 1:Remark. Being S onvex, if si 2 S 8i thenPi �isi 2S when Pi �i = 1.

Proof. Let us �rst ompute the basi probability as-signment assoiated toPi �isi, by means of the Moe-bius inversion formula (1). If by hypothesis s(B) =Pi �isi(B) thenmPi �isi(A) =PB�A(�1)jA�BjPi �isi(B) =Pi �i �PB�A(�1)jA�Bjsi(B) =Pi �imi(A):Now, being Pi �isi 2 S for the above remark, wemust hek if it ombinable with with s, obtainings�Pi �isi. Called Es the olletion of foal elementsof a belief funtion s, we haveEPi �isi = [i:�i 6=0 Esi ; (5)if �i 6= 0 8 i this redues to EPi �isi = S Esi . Thisway if s is ombinable with some si (even only one ofthem) then it is ombinable with Pi �isi.Let us all A1; :::; An the foal elements of Pi �isiand B1; :::; Bm those of s. The f.e. of s�Pi �isi are[i Es�sifor all the intersetions are onsidered, but Prop-erty (5) gives exatly the same result for the f.e. ofPi �i(s � si). Hene, we have to hek the orre-sponding basi probability assignments: for the latterwe have, denoting with fEkg the foal elements of si,mPi �is�si(A) =PB�A(�1)jA�BjPi �i(s� si)(B)=Pi �iPB�A(�1)jA�Bj(s� si)(B) =Pi �ims�si(A) =Pi �i XEk\Bj=Amsi(Ek)ms(Bj)1� XEk\Bj=;msi(Ek)ms(Bj)while, for s�Pi �isi,ms�Pi �isi(A) = XAk\Bj=AmPi �isi(Ak)ms(Bj)1� XAk\Bj=;mPi �isi(Ak)ms(Bj)= XAk\Bj=A(Xi �imsi(Ak)) �ms(Bj)1� XAk\Bj=;(Xi �imsi(Ak)) �ms(Bj)= Xi �i � XAk\Bj=Amsi(Ak)ms(Bj)Xi �i � XAk\Bj=;(Xi �imsi(Ak)) �ms(Bj)



= Xi �i � XAk\Bj=Amsi(Ak)ms(Bj)Xi �i � (1� XAk\Bj=;msi(Ak)ms(Bj))=Xi �i � PAk\Bj=Amsi(Ak)ms(Bj)1�PAk\Bj=;msi(Ak)ms(Bj) :Sine for Ak 62 Esi the addenda vanish, we remain foreah i with the foal elements of si:Xi �i � PEk\Bj=Amsi(Ek)ms(Bj)1�PEk\Bj=;msi(Ek)ms(Bj) ; Ek 2 Esi :The fat that the orthogonal sum and onvex losureoperators ommute is a powerful tool. It provides asimple language that allows us to give geometri in-terpretations of the notions of ombinability and on-ditioning.7 Conditional subspaesDe�nition 7. The onditional subspae hsi is theset of all the belief funtions onditioned by a givenfuntion s, namelyhsi := fs� t; t 2 S s:t: 9 s� tg: (6)Sine not every belief funtion is ombinable withan arbitrary s, we need to understand the geometristruture of ombinable funtions.De�nition 8. The non-ombinable subspae NC(s)assoiated to a belief funtion s is the olletion of allthe b.f.s not ombinable with s,NC(s) := fs0 :6 9s0 � sg:Proposition 3. NC(s) = Cl(fPA : A \ Cs = ;g).Proof. It suÆes to point out that NC(s) = fs0 :Cs0 � Csg = fs0 : A � Cs 8A 2 Cs0g. Hene we anapply Theorem 7 and the thesis follows.The dimension of NC(s) is obviously 2j�nCsj � 2.Using the de�nition of non-ombinable subspae wean write hsi = s�(SnNC(s)) = s�fs0 : Cs0\Cs 6= ;g.Unfortunately, the last expression does not seem tosatisfy Theorem 7: for a b.f. s0 to be ompatible withs it suÆes to have one foal element interseting theore Cs, not all of them.De�nition 9. The ompatible subspae C(s) asso-iated to a belief funtion s is the olletion of all theb.f.s with foal elements inluded into the ore of s:C(s) := fs0 : Cs0 � Csg.

From Theorem 7 it follows thatCorollary 4. C(s) = Cl(fPA : A � Csg).The ompatible spae C(s) is only a proper subset ofthe olletion of belief funtions ombinable with s,S n NC(s): nevertheless, it ontains all the relevantinformation. In fat,Theorem 9. hsi = s� C(s).Proof. Let us denote with Es0 = fAig and Es = fBjgthe foal elements of s0 and s respetively. ObviouslyBj\Ai = Bj\Ai\Cs = Bj\(Ai\Cs) so that de�ninga new b.f. s00 with foal elementsAi := Ai \ Csand basi probability assignment m00(Ai) = m0(Ai)we have s� s0 = s� s00 .Now we are ready to formulate the geometri desrip-tion of onditional subspaes. From Theorem 7 and 9it omes diretlyCorollary 5. hsi = Cl(fs� PA; A � Csg).Note that s � PCs = s, hene s is always a vertex ofhsi. Of ourse hsi � C(s), sine the ore is amonotonefuntion on the poset (S;��). Furthermoredim(hsi) = 2jCsj � 2 (7)for the dimension of hsi is simply the ardinality ofC(s) (note that ; is not inluded) minus 1.We an observe thatdim(NC(s)) + dim(hsi) 6= dim(S):Corollary 5 depits, in a sense, the global ation of theorthogonal sum in the belief spae. In [2℄ we started toanalyze the pointwise behavior of Dempster's rule inS, and its relation with the polytopes of probabilitiesonsistent with the belief funtions to ombine.8 Conlusions and perspetivesThe geometri analysis exposed above is still at its ini-tial stage, even if some interesting results have beenahieved. We now have a piture of the behavior of be-lief funtions as geometrial objets, but many ques-tions still need to be addressed.Some work has already been done on probabilisti([12℄, [16℄) and possibilisti ([5℄) approximations ofbelief funtions. For instane, F. Voorbraak proposedthe following Bayesian approximation:m(A) = 8><>: PB�Am(B)PC��m(C)�jCj ; jAj = 10 otherwise



Nevertheless, we think that the geometri frameworkof the belief spae ould be the right ontext in whihto pose and then solve the problem. Sine a belieffuntion is useful only when it is ombined with oth-ers in an automated reasoning proess, we an laimthat a good approximation, when ombined with anyother belief funtion, produes results similar to whatobtained by ombining the original funtion. Analyti-ally, ŝ = argmins02C Zt2C(s) dist(s� t; s0 � t)dt (8)where dist is one of the lassial Lp distane fun-tions, and C is the lass of belief funtions where theapproximation must belong. It an be proved (see [2℄again) that for the simplest (binary) frame,Proposition 4. For every belief funtion s 2 S2, theprobabilisti approximation indued by the ost fun-tion (8) is unique, and orresponds to the normalizedplausibility of singletons for every arbitrary hoie ofthe distane funtion Lp 8p.This suggests that the optimal approximation an beomputed in losed form. Furthermore, the proposedriterion has a general sope, rests on intuitive prin-iples and ould be adopted to solve a wide numberof problems.On the other side, it is easy to see that, given theshape of onditional subspaes proved in Theorem 9,the simple omponents (e1; e2) of an arbitrary sepa-rable support funtion s in S2 an be expressed asei = Cl(s; s� Pi) \ Cl(0; Pi) = Cl(s; Pi) \ Cl(0; Pi):Hene it seems likely that the language we introdued,based on the two operators of onvex losure and or-thogonal sum, ould be powerful enough to provide ageneral solution to the anonial deomposition prob-lem, alternative to Smets' ([13℄) and Kramosil's ([8℄)ones.The lak of an evidential analogous of the notion ofrandom proess is perhaps one of the major draw-baks of the theory of evidene (as we mentioned inthe Introdution) preventing a wider appliation toengineering problems. The knowledge of the geomet-rial form of onditional subspaes ould be useful topredit the behavior of the series of belief funtionslimn!1(s1 � � � � � sn)and their asymptoti properties.In onlusion, we an argue that even if the geomet-rial analysis of the spae of the belief funtions wasoriginally motivated by the approximation problemits potential appliations are far more extended, anddeserve further attentions.
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