Research Theme: Laplacian Methods for Temporal Matching and
  Segmentation of Articulated Bodies
Locally Linear Embedding for unsupervised temporally consistent segmentation of articulated bodies
Laplacian temporal matching of deformable bodies
In motion analysis and understanding it is important to be able to fit a suitable model or structure to the temporal series of observed data, in order to describe motion patterns in a compact way, and to discriminate between them. In an unsupervised context, i.e., no prior model of the moving object(s) is available, such a structure has to be learned from the data in a bottom-up fashion. In recent times, volumetric approaches in which the motion is captured from a number of cameras and a voxel-set representation of the body is built from the camera views, have gained ground due to attractive features such as inherent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of moving bodies along entire sequences, in a temporallycoherent and robust way, has the potential to provide a means of constructing a bottom-up model of the moving body, and track motion cues that may be later exploited for motion classification. Spectral methods such as locally linear embedding (LLE) can be useful in this context, as they preserve 'protrusions', i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their separation in a lower dimensional space, making them in this way easier to cluster. In this paper we therefore propose a spectral approach to unsupervised and temporally-coherent body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an embedding space, clusters are propagated in time to ensure coherence, and merged or split to accommodate changes in the body's topology. Experiments on both synthetic and real sequences of dense voxel-set data are shown. This supports the ability of the proposed method to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness to sampling density and shape quality, and its potential for bottom-up model construction.
Matching articulated shapes represented by voxel-sets reduces to maximal sub-graph isomorphism when each set is described by a weighted graph. Spectral graph theory can be used to map these graphs onto lower dimensional spaces and match shapes by aligning their embeddings in virtue of their invariance to change of pose. Classical graph isomorphism schemes relying on the ordering of the eigenvalues to align the eigenspaces fail when handling large data-sets or noisy data. We derive a new formulation that finds the best alignment between two congruent K-dimensional sets of points by selecting the best subset of eigenfunctions of the Laplacian matrix. The selection is done by matching eigenfunction signatures built with histograms, and the retained set provides a smart initialization for the alignment problem with a considerable impact on the overall performance. Dense shape matching casted into graph matching reduces then, to point registration of embeddings under orthogonal transformations; the registration is solved using the framework of unsupervised clustering and the EM algorithm. Maximal subset matching of non identical shapes is handled by defining an appropriate outlier class. Experimental results on challenging examples show how the algorithm naturally treats changes of topology, shape variations and different sampling densities.
Lab Member(s): Fabio Cuzzolin, Diana Mateus