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Abstract—In this paper, we propose a geometric approach to the
theory of evidence based on convex geometric interpretations of its
two key notions of belief function (b.f.) and Dempster’s sum. On
one side, we analyze the geometry of b.f.’s as points of a polytope
in the Cartesian space called belief space, and discuss the intimate
relationship between basic probability assignment and convex
combination. On the other side, we study the global geometry of
Dempster’s rule by describing its action on those convex com-
binations. By proving that Dempster’s sum and convex closure
commute, we are able to depict the geometric structure of
conditional subspaces, i.e., sets of b.f.’s conditioned by a given
function b. Natural applications of these geometric methods
to classical problems such as probabilistic approximation and
canonical decomposition are outlined.

Index Terms—Belief function (b.f.), belief space, conditional
subspace, Dempster’s rule, simplex, theory of evidence (ToE).

I. INTRODUCTION

THE theory of evidence (ToE) [1] was introduced in the
late 1970s by G. Shafer as a way of representing epis-

temic knowledge, starting from a sequence of seminal works
[2]–[4] of A. Dempster. In this formalism, the best representa-
tion of chance is a belief function (b.f.) rather than a Bayesian
mass distribution. The b.f.’s can be pooled by means of an oper-
ator called Dempster’s rule [2] whose appeal has made the ToE
one of the most popular theories of probable reasoning. The lit-
erature on the ToE is now vast, and includes applications to fields
as different as computer vision [5], social sciences [6], risk anal-
ysis [7], and sensor fusion [8]. Recent studies include, among
others, the design of classifiers based on b.f.’s [9], the analysis
of k-additive b.f.’s [10], and the extension of the evidential for-
malism to continuous spaces [11]. Those very applications stim-
ulate, in turn, major advances in the theory itself. In estimation
problems, for instance, it is often required to compute a point-
wise estimate of the quantity of interest: object tracking [12]
is a typical example. The problem of approximating a b.f. with
a probability then naturally arises [13]–[21]. The link between
b.f.’s and probabilities is as well the foundation of a popular
approach to the ToE, Smets’ “transferable belief model” [22].

The approximation problem, though, can be cast in a dif-
ferent light by asking in which space b.f.’s live, and what
sort of function is the most suitable to measure distances be-
tween b.f.’s or between b.f.’s and probabilities. As a belief,
function b : 2Θ → [0, 1] on Θ is completely specified by its
N − 1, N = 2|Θ | belief values {b(A),∀A ⊂ Θ, A �= ∅}, b can
be thought of as a vector v = [vA = b(A), A ⊂ Θ, A �= ∅]′ of

Manuscript received January 11, 2005; revised August 29, 2006 and July 2,
2007. This paper was recommended by Associate Editor A.-O. Nii.

The author is with the Institut National de Recherche en Informa-
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R
N −1 . The collection B of all points of R

N that correspond to
a b.f. turns out to be a polytope, which we call the belief space.

The study of the interplay between b.f.’s and probabilities
has, in fact, been posed in a geometric setup by other authors
[23]–[25]. In robust Bayesian statistics, more in general, a
large amount of literature exists on the study of convex sets of
distributions [26]–[30].

In this paper, we introduce a geometric interpretation of the
ToE, in which issues such as the probabilistic approximation
problem or the description of conditional b.f.’s can be formal-
ized and solved. As a reflection of the structure of the ToE,
the approach is based on two pillars: the study the geometry
of b.f.’s and that of Dempster’s rule of combination. After
recalling the basic notions of the ToE (Section II), we briefly
present an example of the applications that originally motivated
this work, and lay out a research plan in which geometric
interpretations of b.f.’s and rule of combination are investigated
(Section III). Accordingly, starting from the insight provided
by the simple case of a binary frame, we discuss the convexity
of the belief space and its regions associated with Bayesian and
simple support b.f.’s. The first part of the paper culminates in
Section IV, where we prove that B has the form of a simplex,
in which the basic probability assignment [1] of a b.f. b plays
the role of its simplicial coordinates in B. The second part is
devoted to the geometry of Dempster’s rule. In Section VI,
we prove a fundamental result on Dempster’s sums of convex
combinations, and use it to show that the rule of combination
commutes with the convex closure operator in the belief space.
This allows us to describe the “global” geometry of the orthog-
onal sum in terms of simplices called conditional subspaces.
We conclude (Section VII) by giving a flavor of some of the
manifold lines of research opened by the geometric approach.

II. THEORY OF EVIDENCE

Definition 1: A basic probability assignment (b.p.a.) over a
finite set (frame of discernment [1]) Θ is a function m : 2Θ →
[0, 1] on its power set 2Θ .= {A ⊆ Θ} such that m(∅) = 0,∑

A⊆Θ m(A) = 1, and m(A) ≥ 0 ∀A ⊆ Θ. Subsets of Θ as-
sociated with nonzero values of m are called focal elements
(f.e.’s), and their union C core. The b.f. b : 2Θ → [0, 1] associ-
ated with a b.p.a. mb on Θ is defined as: b(A) =

∑
B⊆A mb(B).

Alternative definitions of b.f.’s can, though, be given inde-
pendently from the notion of b.p.a. [1].

A b.f. b : 2Θ → [0, 1] is called simple support function fo-
cused on A whenever mb(A) = σ, mb(Θ) = 1 − σ, while
mb(B) = 0 for every other B ⊆ Θ. On the other side, in the
ToE, a finite probability function on Θ is simply a special b.f.
(Bayesian b.f.), which assigns nonzero mass to elements of the
frame only: mb(A) = 0 ∀A : |A| > 1 (where |A| denotes the
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cardinality of the subset A). The b.f.’s admit the order relation

b ≤ b′ ≡ b(A) ≤ b′(A) ∀A ⊆ Θ (1)

called weak inclusion. A probability distribution p such that a b.f.
b is weakly included in p (p(A) ≥ b(A) ∀A) is said to be consis-
tent with b [31]: b can be viewed as the lower envelope of the set
of probabilities consistent with it: {p : p(A) ≥ b(A) ∀A ⊆ Θ}.

The b.f.’s representing distinct bodies of evidence can be
combined through Dempster’s rule.

Definition 2: The orthogonal sum or Dempster’s sum of two
b.f.’s b1 and b2 defined on a frame Θ is a new b.f. b1 ⊕ b2 on Θ
whose focal elements are all the possible nonempty intersections
Ai ∩ Bj of f.e.’s of b1 and b2 , respectively, and whose b.p.a. is
given by

mb1 ⊕ b2 (A) =

∑
i,j :Ai ∩Bj =A mb1 (Ai)mb2 (Bj )

∑
i,j :Ai ∩Bj �=∅ mb1 (Ai)mb2 (Bj )

(2)

where mb1 and mb2 denote the b.p.a.’s of b1 and b2 , respectively.
We denote by k(b1 , b2) the denominator of (2). When

k(b1 , b2) = 0, the two b.f.’s cannot be combined. Dempster’s
rule can be naturally extended to the combination of several
b.f.’s.

III. GEOMETRIC APPROACH TO THE THEORY OF EVIDENCE

When one tries to apply the ToE to classical engineering or
artificial intelligence (AI) problems, important questions arise,
stimulating major advances in the theory itself. Object tracking
[32], [33], for instance, is a central problem in computer vision.
It concerns the reconstruction of the configuration or “pose” of a
moving object (expressed as a point q of some region Q of
R

D , called configuration space) by processing the sequence of
images taken during its motion. In the case of rigid bodies, their
pose is simply the position and orientation of the object with
respect to some fixed reference frame. If the body is “articulated”
(composed by several rigid bodies) like a human arm or hand,
its pose has also to describe its internal configuration.

When no a priori information about the body is available,
the only way of doing inference on the object pose is build-
ing in a learning stage a map between poses and some salient
image measurements called features. In [12], we proposed a
method to learn those maps between a finite approximation
Q̃ = {qk , k = 1, . . . , T} of the parameter space (acquired as a
collection of poses assumed by the object in a training session)
and a number of feature spaces Θi . These maps ρi , together
with feature Θi and parameter Q̃ spaces, form what we can call
an evidential model of the object (see Fig. 1). When the object
evolves freely, the evidential model can be used to estimate its
pose by representing new features as b.f.’s defined on the frames
{Θi , i}, projecting them onto Q̃, and combining them through
Dempster’s rule. This yields a belief estimate b̂ : 2Q̃ → [0, 1] of
the pose, which then needs to be processed to extract a pointwise
estimate q̂ of the configuration. A natural way is to approximate
b̂ with a finite probability p̂ on Q̃, and later, compute its mean
value as q̂ =

∑T
k=1 p̂(qk )qk . An evidential solution to the object

tracking problem involves facing the probabilistic approxima-
tion problem.

Fig. 1. Evidential model architecture.

Although the problem has been widely studied before [17]
its concrete application stimulates us to pose it from scratch
in a completely different setting. Where do b.f.’s live? Which
relationship have they with probabilities in this space? How do
you measure the distance between a b.f. and a probability? As
we are going to show here, the language of convex geometry
can be used to define a framework in which all those questions
are addressed.

The first pillar of the ToE is the notion of basic probability
assignment, i.e., the idea of assigning masses directly to events
instead of elements of a frame. We then first need to understand
how to describe b.p.a.’s in a convex geometric language. This
leads us to define the notion of belief space B as the space of all
b.f.’s on a given frame, drawing intuition from the simplest case
of a binary domain. In particular, we will observe that all proba-
bilities live in a region, which dominates the belief space (in the
sense of Section II). The latter turns out to be convex, mirroring
similar results for lower provisions [34]. After noticing that B
is a triangle in the binary case, we will prove and discuss the
general form of the belief space as a polytope or simplex.

The b.f.’s, though, are useful only when combined in an evi-
dence revision process. The mechanism shaping this process in
the ToE is Dempster’s rule. In the second part of the paper, we
will study the behavior of the rule of combination in our geo-
metric framework, and describe the notion of conditional b.f. in
geometric terms.

IV. SPACE OF BELIEF FUNCTIONS

Consider a frame of discernment Θ, and introduce in the
Cartesian space R

N −1 , where N = 2|Θ | is the number of
nonempty subsets of Θ, a reference frame (a set of linearly
independent vectors) {XA : A ⊆ Θ, A �= ∅}. Each vector v of
R

N −1 can then be expressed in terms of this base as

v =
∑

A⊆Θ ,A �=∅
vAXA = [vA ,A ⊆ Θ, A �= ∅]′.

For instance, if Θ = {x, y, z}, each vector has the form v =
[vx, vy , vz , v{x,y}, v{x,z}, v{y ,z}, vΘ]′.

As each b.f. b on Θ is completely specified by its belief
values b(A) on all the N − 1 subsets of Θ (∅ can be neglected
as b(∅) = 0), v is potentially a b.f., its component vA measuring
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Fig. 2. The belief space B for a binary frame is a triangle in R
2 whose vertices

are the basis b.f.’s focused on {x}, {y}, and Θ (bx , by , bΘ , respectively). The
probability region is the segment Cl(bx , by ). The set of probabilities P [b]
consistent with a b.f. b also forms a segment.

the belief value of A: vA = b(A) ∀A ⊆ Θ. However, not every
vector v ∈ R

N −1 represents a valid b.f., as it may not meet the
conditions of Definition 1.

Definition 3: The belief space is the set of points B of R
N −1 ,

which correspond to valid b.f.’s.

A. Belief Space for a Binary Frame

To get some insight about properties and geometric shape
of the belief space, it may be useful to have first a look at
how b.f.’s defined on a frame of discernment with just two ele-
ments Θ2 = {x, y} can be represented as points of a Cartesian
space. In this very simple case, each b.f. b : 2Θ2 → [0, 1] is
completely determined by its belief values b(x), b(y) and b(Θ)
(since b(∅) = 0 for all b). We can then collect them in a 3-D vec-
tor [b(x), b(y), b(Θ)]′ ∈ R

3 and associate b with a point of R
3 .

However, since it is always true that b(Θ) =
∑

A⊆Θ mb(A) = 1,
the last coordinate of the vector can also be neglected (this is, of
course, true for arbitrary frames too). In the binary case, we can
then represent b as the vector [b(x) = mb(x), b(y) = mb(y)]′ of
R

N −2 = R
2 (as N = 22 = 4). Since mb(x) ≥ 0, mb(y) ≥ 0,

and mb(x) + mb(y) ≤ 1, the set B2 of all possible b.f.’s on Θ2
is the triangle in the Cartesian plane of Fig. 2, with vertices

bΘ = [0, 0]′ bx = [1, 0]′ by = [0, 1]′

which correspond, respectively, to the vacuous b.f. bΘ
(mbΘ (Θ) = 1), the Bayesian b.f. bx with mbx

(x) = 1, and the
Bayesian b.f. by s.t. mby

(y) = 1. The vectors Xx = [1, 0]′ and
Xy = [0, 1]′ form a reference frame {XA : ∅ ⊆

/
A ⊆

/
Θ} in the

Cartesian plane. All Bayesian b.f.’s on Θ2 obey the constraint
mb(x) + mb(y) = 1, and then, correspond to points of the seg-
ment P2 joining bx = [1, 0]′ and by = [0, 1]′. Note that

∑

A⊆Θ2

b(A) = b(x) + b(y) + b(Θ2) = mb(x) + mb(y) + 1

= 2 − mb(Θ) (3)

which is equal to 2 iff b is Bayesian.
The set of Bayesian b.f.’s consistent with b is the seg-

ment P [b] in Fig. 2 whose extreme points are the proba-
bilities [mb(x), 1 − mb(x)]′ and [1 − mb(y),mb(y)]′. The L1
distance between b and P [b]: ‖b, P [b]‖1 = maxp∈P [b]{|b(x) −

p(x)|, |b(y) − p(y)|} = mb(Θ2) is the mass assigned to the
whole frame. From this example, we can observe the following.

1) The belief space B and the Bayesian space P are convex:
given any two points in B (P), the segment joining them is
entirely in B (P).

2) Moreover, B and P are both polytopes or simplices, i.e.,
convex closures of a finite sets of (affinely independent, see foot-
note 1) points B2 = Cl(bΘ , bx , by ), P2 = Cl(bx, by ), where the
convex closure of a number of vectors v1 , . . . , vk in a Cartesian
space R

m is defined as

Cl(v1 , . . . , vk ) .=

{
k∑

i=1

αivi,

k∑

i=1

αi = 1, αi ≥ 0

}

. (4)

3) The probabilities consistent with a b.f. b also form a simplex
(a segment, in the binary case).

B. Region of Dominating Probabilities

These are indeed general properties, valid for arbitrary
frames. Let us first characterize the geometry of Bayesian b.f.’s.
Generalizing condition (3), we can prove the following.

Theorem 1: The region of the belief space associated with all
Bayesian b.f.’s on Θ is

P =

{

b : 2Θ → [0, 1] :
∑

A⊆Θ

b(A) = 2n−1

}

, n
.= |Θ|.

(5)
Proof: If b : 2Θ → [0, 1] is a b.f. on a frame

Θ, we have that
∑

A⊆Θ b(A) =
∑

A⊆Θ
∑

B⊆A mb(B) =∑
B⊆Θ mb(B)|{A : B ⊆ A ⊆ Θ}| as each subset B is

counted as many times as there are A’s contain-
ing it. But, since |{A : B ⊆ A ⊆ Θ}| = |{C ⊆ (Θ \ B)}| =
2|Θ\B | = 2n−|B |, we have that (after switching back to the no-
tation A for subsets of Θ)

∑

A⊆Θ

b(A) =
∑

A⊆Θ

mb(A)2n−|A |. (6)

If b is Bayesian mb(A) = 0 ∀A : |A| > 1, and
∑

A⊆Θ b(A) =
2n−1 . Conversely, if

∑

A⊆Θ

b(A) =
∑

A⊆Θ

mb(A)2n−|A |

= 2n−1
∑

x∈Θ

mb(x) +
∑

|A |>1

mb(A)2n−|A | = 2n−1

then,
∑

x∈Θ mb(x) = 1, i.e., b is Bayesian. �
Theorem 2: The belief spaceB is dominated by the probability

region P , namely
∑

A⊆Θ

b(A) ≤ 2n−1 ∀b ∈ B

where the equality holds iff b is Bayesian.
Proof: Recalling (6), and after noticing that 2|Θ\B | ≤ 2n−1

(where the equality holds iff |B| = 1), we have that∑
A⊆Θ b(A) =

∑
A⊆Θ mb(A)2|Θ\A | ≤ 2n−1 ∑

A⊆Θ mb(A) =
2n−1 · 1, where the equality holds iff |A| = 1 for every focal
element of b, i.e., b is Bayesian. �
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C. Convexity

It is natural to conjecture that the belief space is convex in the
general case too. In fact, it is well known that b.f.’s are a special
type of coherent lower probabilities, (consult [34, Sec. 5.13]),
and that coherent lower probabilities are closed under convex
combination. This implies that convex combinations of b.f.’s
are still coherent. Here, we are going to prove a stronger result.
Given a b.f. b, the corresponding basic probability assignment
is obtained by applying the Möbius inversion lemma [35]

mb(A) =
∑

B⊆A

(−1)|A\B |b(B). (7)

We can, hence, decide whether a point v ∈ R
N −1 is a b.f. by

computing the corresponding b.p.a. and checking the axioms
mb must obey (see Definition 1). The normalization constraint∑

A⊆Θ mb(A) = 1 trivially translates into B ⊂ {v ∈ R
N −1 :

vΘ = 1}: b.f.’s can indeed be seen as points of R
N −2 . The

nonnegativity condition mb(A) ≥ 0 ∀A ⊆ Θ reads instead as

mb(A) = b(A)+· · ·+(−1)|A |−k
∑

|B |=k

b(B)+· · ·+(−1)|A |−1

∑

x∈Θ

b(x) ≥ 0 ∀A ⊆ Θ. (8)

All the constraints in (8) have the form
∑

B⊆A,|A\B | even b(B) ≥
∑

B⊆A,|A\B | odd b(B). We can use this fact to prove the
following.

Theorem 3: The belief space B is convex.
Proof: Let us consider two points b0 , b1 ∈ B, and prove that

all the points bα in the segment {bα = b0 + α(b1 − b0), 0 ≤
α ≤ 1} belong to B. Since b0 , b1 ∈ B

∑

B⊆A,|A\B | even

b0(B) ≥
∑

B⊆A,|A\B | odd

b0(B)

∑

B⊆A,|A\B | even

b1(B) ≥
∑

B⊆A,|A\B | odd

b1(B) (9)

∀A ⊆ Θ, so that
∑

B⊆A,|A\B | even

bα (B)

=
∑

B⊆A,|A\B | even

[b0(B) + α(b1(B) − b0(B))]

=(1−α)
∑

B⊆A,|A\B | even

b0(B)+α
∑

B⊆A,|A\B | even

b1(B) ≥

by (9)

≥(1 − α)
∑

B⊆A,|A\B | odd

b0(B) + α
∑

B⊆A,|A\B | odd

b1(B)

=
∑

B⊆A,|A\B | odd

bα (B)

i.e., bα ∈ B. �

V. SIMPLICIAL FORM OF THE BELIEF SPACE

It is well known that the set of probability distributions we
can define on a finite sample space Θ of cardinality n forms a
polytope or simplex (called probability simplex) in the Cartesian
space R

n , n = |Θ|, whose vertices are the n versors of R
n itself,

[1, 0, . . . , 0]′, [0, 1, . . . , 0]′, . . ., [0, . . . , 0, 1]′. The belief space
B is itself convex (Section IV-C), and corresponds to a triangle
in the binary case. B can be indeed described as a polytope
for arbitrary frames too, generalizing the case of probability
distributions [23].

A. Simplex of Belief Functions

We first need to understand the geometric behavior of basic
probability assignments.

Theorem 4: The set of all b.f.’s with focal elements in a
collection {A1 , . . . , Am} is closed and convex in B, namely,
{b : Eb ⊆ {A1 , . . . , Am}} = Cl(bAi

, i = 1, . . . ,m), where Eb

is the collection of focal elements of b, and bA is the vector of
R

N −2 with components

bA (B) =
{

1, if B ⊃ A
0, if B �⊃ A

∅ ⊆
/
B ⊆ Θ. (10)

Proof: By definition, {b : Eb ⊆ {A1 , . . . , Am}} is the set of
vectors of R

N −2 of the form

b =
[
b(A) =

∑

B⊆A,B∈Eb

mb(B), ∅ ⊆
/
A ⊆

/
Θ

]′

for some collection of subsets Eb ⊆ {A1 , . . . , Am}.
Each component b(A) of these vectors b can be

obviously written as b(A) =
∑

B⊆A,B∈Eb
mb(B) =∑

B∈Eb
mb(B)bB (A) where the “indicator” function

bB (A) = 1 if A ⊃ B, bB (A) = 0 if A �⊃ B selects the
subsets B of A. After collecting the values bB (A) in a vector
bB = [bB (A), ∅ ⊆

/
A ⊆

/
Θ]′, we can express b as a convex

combination of the vectors bB

b=
∑

B∈Eb

mb(B)bB =
∑

B∈{A 1 ,...,Am }
mb(B)bB =

m∑

i=1

mb(Ai)bAi

as mb(B) = 0 whenever Ai �∈ Eb . Since mb is a basic prob-
ability assignment

∑m
i=1 mb(Ai) = 1 and mb(Ai) ≥ 0 ∀i. By

definition of convex closure (4)

{b : Eb ⊆ {A1 , . . . , Am}}

=

{

b =
m∑

i=1

mb(Ai)bAi
,

m∑

i=1

mb(Ai) = 1,mb(Ai) ≥ 0 ∀i

}

= Cl(bAi
, i = 1, . . . ,m).

�
Proposition 1: The vector bA defined by (10) is the simple

support b.f. assigning unitary mass to a single subset A (Ath
basis b.f.)

mbA
(A) = 1 mbA

(B) = 0 ∀B �= A. (11)
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Fig. 3. (Left) Simplicial structure of the belief space B = Cl(bA , A �= ∅). Its vertices are all the basis b.f.’s bA represented as vectors of R
N −2 . The probabilistic

subspace is a subset P = Cl(bx , x ∈ Θ) of its border. (Right) Locations of some major classes of b.f.’s in the binary belief space.

Proof: The belief values associated with the b.p.a. (11) are
∀B ⊆ Θ, B �= ∅

b(B) =
∑

C⊆B

m(C) =
{

1, B ⊃ A
0, B �⊃ A

i.e., (10). �
Immediately, since B is the collection of b.f.’s b with focal

elements in 2Θ \ ∅ (Eb ⊆ 2Θ \ ∅), we have the following.
Corollary 1: The belief space B is the convex closure of all

the basis b.f.’s, B = Cl(bA , ∅ ⊆
/
A ⊆ Θ).

Even though the vectors {bA , ∅ ⊆
/

A ⊆ Θ} are (N − 2)-
dimensional, B has N − 1 vertices, including the basis b.f.
bΘ . Since bΘ(B) = 0 ∀B ⊆ Θ, B �= Θ, bΘ = 0 is the origin
of R

N −2 .
In convex geometry, a k-dimensional simplex is the con-

vex closure Cl(x1 , . . . , xk+1) of k + 1 affinely independent1

points x1 , . . . , xk+1 of the Cartesian space R
k . The faces of

a k-dimensional simplex are all the possible simplices gen-
erated by subsets of its vertices, i.e., Cl(xj1 , . . . , xjm

) with
{j1 , . . . , jm} ⊂ {1, . . . , k + 1}. As it is easy to see that the vec-
tors {bA , ∅ ⊆

/
A ⊆ Θ} are affinely independent in R

N −1 , it fol-
lows thatB is a simplex in R

N −1 (see Fig. 3-left). By Theorem 4,
each b.f. b ∈ B can be written as

b =
∑

∅⊆
/
A⊆Θ

mb(A)bA .

A b.p.a. is geometrically a choice of simplicial coordinates for
b in the polytope B.

B. Faces of B as Classes of Belief Functions

Obviously, a Bayesian b.f. (a finite probability) is a b.f.
with focal elements in the collection of singletons: Eb =
{{x1}, . . . , {xn}}. Immediately, by Theorem 4, we have the
following.

1An affine combination of k points v1 , . . . , vk ∈ R
m is a sum α1 v1 +

· · · + αk vk whose coefficients sum to one:
∑

i
αi = 1. The affine subspace

generated by the points v1 , . . . , vk ∈ R
m is the set {v ∈ R

m : v = α1 v1 +
· · · + αk vk ,

∑
i
αi = 1}. If v1 , . . . , vk generate an affine space of dimension

k, they are said to be affinely independent.

Corollary 2: The region of the belief space that corresponds
to probability functions is the part of its border determined by all
the simple probabilities, i.e., the simplex2 P = Cl(bx, x ∈ Θ).
P is then an (n − 1)-dimensional face ofB (whose dimension

is instead N − 2 = 2n − 2, as it has 2n − 1 vertices).
Some 1-D faces of the belief space also have an intuitive

meaning in terms of belief. Consider the segments Cl(bΘ , bA )
joining the vacuous b.f. bΘ (mbΘ (Θ) = 1, mbΘ (B) = 0 ∀B �=
Θ) with the basis b.f. bA (10). Points of Cl(bΘ , bA ) can be writ-
ten as a convex combination as b = αbA + (1 − α)bΘ . Since
convex combinations are b.p.a.’s in B, such a b.f. b has b.p.a.
mb(A) = α, mb(Θ) = 1 − α, i.e., b is a simple support func-
tion focused on A (Section II). The union of these segments for
all events A: S = ∪∅⊆

/
A ⊆

/
ΘCl(bΘ , bA ) is the region of all the

simple support b.f.’s on Θ. In the binary case (see Fig. 3-right),
simple support functions focused on {x} lie on the horizontal
segment Cl(bΘ , bx), while simple support b.f. focused on {y}
form the vertical segment Cl(bΘ , by ).

C. Geometry of Consistent Probabilities

We have seen in Section IV-A that the set P [b] of the prob-
ability functions consistent with a given b.f. b is in the bi-
nary case a segment, i.e., a 1-D polytope. As a matter of fact,
Ha et al. [23] proved that P [b] can be expressed in the probabil-
ity simplex as the sum of the polytopes associated with the focal
elements Ai , i = 1, . . . , k of b, weighted by the corresponding
masses, i.e.

P [b] =
k∑

i=1

mb(Ai)conv(Ai) (12)

where conv(Ai) is the convex closure of the probabilities as-
signing 1 to a particular element x of Ai . We can think of the
basic probability mb(A) of a focal element A as a probability
free to move inside A. Intuitively then, if we assign the mass of
each focal element Ai to one of its points xi ∈ Ai , we get an
extremum of the region of consistent probabilities.

2With a harmless abuse of notation, we denote the basis b.f. associated with
a singleton x by bx instead of b{x}. Accordingly, we write mb (x) instead of
mb ({x}).
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Let us then find an explicit expression for (12). Given an arbi-
trary b.f. b with f.e.’s A1 , . . . , Ak , we can define for each choice
of k representatives [x1 , . . . , xk ], xi ∈ Ai ∀i of the f.e.’s the b.f.

b(x1 , . . . , xk ) .=
k∑

i=1

mb(Ai)bxi
. (13)

Theorem 5: P[b] = Cl(b(x1 , . . . , xk ), [x1 , . . . , xk ] ∈ A1
× · · · × Ak ).

Proof: Starting from (12), P [b] can be developed as

P [b] =
{ k∑

i=1

mb(Ai)
( |Ai |∑

j=1

αj
i bxj

i

)

,

|Ai |∑

j=1

αj
i = 1 ∀i

}

=
{

mb(A1)
|A 1 |∑

j1 =1

αj1
1 b

x
j 1
1

+
k∑

i=2

mb(Ai)
( |Ai |∑

j=1

αj
i bxj

i

)

,

|Ai |∑

j=1

αj
i = 1 ∀i

}

=
{

mb(A1)
|A 1 |∑

j1 =1

αj1
1 b

x
j 1
1

+
k∑

i=2

( |A 1 |∑

j1 =1

αj1
1

)

mb(Ai)

×
( |Ai |∑

j=1

αj
i bxj

i

)

,

|Ai |∑

j=1

αj
i =1 ∀i

}

=
{ |A 1 |∑

j1 =1

αj1
1 mb(A1)bx

j 1
1

+
|A 1 |∑

j1 =1

αj1
1

×
[ k∑

i=2

mb(Ai)
( |Ai |∑

j=1

αj
i bxj

i

)]

,

|Ai |∑

j=1

αj
i = 1 ∀i

}

=
{ |A 1 |∑

j1 =1

αj1
1

[

mb(A1)bx
j 1
1

+
k∑

i=2

mb(Ai)
( |Ai |∑

j=1

αj
i bxj

i

)]

,

|Ai |∑

j=1

αj
i = 1 ∀i

}

. (14)

The expression inside the square brackets can be, in turn,
written as

mb(A1)bx
j 1
1

+mb(A2)
|A 2 |∑

j2 =1

αj2
2 b

x
j 2
2

+
k∑

i=3

mb(Ai)
( |Ai |∑

j=1

αj
i bxj

i

)

=
( |A 2 |∑

j2 =1

αj2
2

)

mb(A1)bx
j 1
1

+ mb(A2)
|A 2 |∑

j2 =1

αj2
2 b

x
j 2
2

+
( |A 2 |∑

j2 =1

αj2
2

) k∑

i=3

mb(Ai)
( |Ai |∑

j=1

αj
i bxj

i

)

=
|A 2 |∑

j2 =1

αj2
2

[

mb(A1)bx
j 1
1

+ mb(A2)bx
j 2
2

+
k∑

i=3

mb(Ai)
( |Ai |∑

j=1

αj
i bxj

i

)]

which replaced in (14) yields P [b] = {
∑|A 1 |

j1 =1
∑|A 2 |

j2 =1 βj1 j2

[mb(A1)bx
j 1
1

+ mb(A2)bx
j 2
2

+
∑k

i=3 mb(Ai)(
∑|Ai |

j=1 αj
i bxj

i
)] :

∑
j1 j2

βj1 j2 = 1,
∑|Ai |

j=1 αj
i = 1 ∀i = 3, . . . , k} with βj1 j2

.=
αj1

1 × αj2
2 . Clearly the expression inside the square brackets

has the same shape as before, so that, by induction on the
number of focal elements, we have as desired. �

Accordingly, the center of mass P[b] of P[b] has the form

1
∏

i |Ai |
∑

[x1 ,...,xk ]∈A 1 ×···×Ak

b(x1 , . . . , xk )

=
1

∏
i |Ai |

∑

[x1 ,...,xk ]∈A 1 ×···×Ak

k∑

i=1

mb(Ai)bxi

=
1

∏
i |Ai |

∑

x∈Cb

bx ·
∑

Aj ⊇{x}
mb(Aj )

∏
i |Ai |
|Aj |

(15)

(where Cb is the core of b) as each basis probability bx appears
in (15) with coefficient mb(Aj ), a number of times

∏
i �=j |Ai |

equal to the number of possible choices of representatives for
the other focal elements of b. This, in turn, reads as

∑

x∈Cb

bx

( ∑

Aj ⊇{x}

mb(Aj )
|Aj |

)

=
∑

x∈Θ

bx

( ∑

A⊇{x}

mb(A)
|A|

)

(16)

(since no f.e. includes points outside the core), which is nothing
but Smets’ pignistic function [22]

P[b] = BetP [b] BetP [b](x) .=
∑

A⊇{x}

mb(A)
|A| .

The geometric analysis of the region of the consistent probabili-
ties can be related to a popular technique in robust statistics, the
Epsilon Contamination Model. For a fixed 0 < ε < 1 and a prob-
ability distribution P ∗, the associated ε-contamination model is
a convex class of distributions of the form {(1 − ε)P ∗ + εQ},
where Q is an arbitrary probability distribution. T. Seidenfeld
proved that (for discrete domains) any ε-contamination model
is equivalent to a b.f., whose corresponding consistent proba-
bilities form the largest convex set induced by the collection
of coherent lower probabilities the model specifies for the ele-
ments of the domain (see [36, Th. 2.10]). It is worth noticing
that in this special case, P ∗ has the meaning of barycenter of
the convex set, providing yet another interesting interpretation
of (15).

VI. GEOMETRY OF DEMPSTER’S RULE

In the first part of the paper, we investigated the geomet-
ric properties of the twin notions of b.f. and basic probability
assignment. We now know that b.f.’s live in a simplex in the
Cartesian space R

2 |Θ |−2 whose vertices represent b.f.’s focused
on a single event, and where b.p.a.’s can be interpreted as simpli-
cial coordinates. We still need to understand the geometry of the
other key concept of the ToE, Dempster’s rule of combination,
in turn, related to the notion of conditional b.f.

Conditional b.f.’s have been given in the past several alter-
native definitions by different authors [37]. Fagin and Halpern,
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for instance, defined a notion of conditional belief [38] as the
lower envelope of a family of conditional probability functions,
and provided a closed-form expression for it. On the other side,
Spies [39] established a link between conditional events and
discrete random sets. Conditional events were defined as sets of
equivalent events under the conditioning relation. By applying
to them a multivalued mapping (which induces a b.f., according
to Dempster’s original formulation), he gave a new definition of
conditional b.f. An updating rule equivalent to the law of total
probability when all beliefs are probabilities was introduced.

In [40], Slobodova described instead how conditional b.f.’s
(defined as in Spies’ approach) fit in the framework of valuation-
based systems, while Xu and Smets [41], [42] showed how to
use them to represent relations among variables as joint b.f.’s
on the product space of the involved variables, and presented
a propagation algorithm for such a network. Graphical belief
models have been formulated and described [43], and the nature
of belief propagations in evidential networks has been investi-
gated [44].

In the following, we will call conditional b.f. b|b′ the combi-
nation of b with b′:

b|b′ = b ⊕ b′.

In this form, conditional b.f.’s arise from the application of the
ToE to estimation problems in which some sort of “temporal
coherence” has to be enforced. Data association is a typical
example.

A. Data Association, Conditional Belief Functions, and
Total Belief

In the “data association” problem, a number of points mov-
ing in the 3-D space are tracked by one or more cameras and
appear in an image sequence as unlabeled (undistinguishable)
feature points, and we seek for the correspondences between
points of two consecutive frames. A popular approach called
joint probabilistic data association filter [45] is based on the
implementation of a number of Kalman filters (each associated
to a feature point) to predict the future position of the target.
Unfortunately, when several features converge to a same small
region of space, the algorithm cannot distinguish them any-
more. However, when additional information is available, it can
be used to help the association process. One way to do this is
representing the evidence coming from Kalman filters and other
available constraints on the targets’ motion as b.f.’s, and com-
bining them on the space of all possible associations between
target points. For instance, if targets are known to belong to
an articulated body of known topological model (an undirected
graph whose edges represent rigid motion constraints), the rigid
motion constraint can be exploited to improve the robustness of
the estimation.

Formally, let us call the set of points of the model {Mj, j =
1, . . . , N}, and {mk

l , l = 1, . . . , n(k)} the measured feature
points in the time-k image (where n(k) is the number of de-
tected targets). The data association problem consists on find-
ing, at each time k, the correct association between points
of the model and feature points mk

l ↔ Mj. In the simplest

case, we can assume n(k) = N . The information carried by
Kalman filters’ predictions concerns associations between fea-
ture points belonging to consecutive images mk−1

l ↔ mk
m ,

rather than points of the model, and can then be repre-
sented as b.f.’s on the frame of all feature-to-feature associ-
ations: Θk−1

k
.= {mk−1

l ↔ mk
m , ∀l,m = 1, . . . , N}. The rigid

motion constraint depends, on the other hand, on the model-
measurement association at the previous step k − 1: those asso-
ciations are collected in the frame of all past model-feature as-
sociations: Θk−1

M
.= {mk−1

l ↔ Mj, ∀j, l = 1, . . . , N}. At each
time instant k, the desired associations mk

l ↔ Mj are in-
stead elements of the current model-feature associations frame:
Θk

M
.= {mk

l ↔ Mj, ∀j, l = 1, . . . , N}.
The natural place where to combine all the available evi-

dence is then the minimal refinement3 of all these frames, the
combined association frame Θ .= Θk−1

M ⊗ Θk−1
k . All belief con-

straints must be combined on Θ and projected on the current
association frame Θk

M by restriction, producing the best current
estimate.

Now, the rigid motion constraint derived from a topological
model of the body can be expressed in a conditional way only: in
fact, to test the rigidity of the motion of two measured points at
time k, we need to know the correct association between points
of the model and feature points at time k − 1. Consequently,
the constraint generates an entire set of b.f.’s bi : 2ρk −1

M
({ai }) →

[0, 1], where ai is the ith possible model-feature mk−1
l ↔ Mj

association at time k − 1, and the domains ρk−1
M ({ai}) are the

elements of the partition induced on the common refinement Θ
by Θk−1

M (see Fig. 4-left).
These conditional b.f.’s bi must be reduced to a single total

b.f. that will be eventually pooled with the other constraints. A
generalization of the total probability theorem to b.f.’s is then
necessary. This reads as follows.

Theorem 6: Suppose Θ and Ω are two frames of discernment,
and ρ : 2Ω → 2Θ a refining. Let b0 : 2Ω → [0, 1] be a b.f. defined
on Ω and {b1 , . . . , bn} a collection of n b.f.’s bi : 2Θ i → [0, 1]
defined on the elements Θi the partition {Θ1 , . . . ,Θn} of Θ
induced by the coarsening Ω. Then, there exists a b.f. b : 2Θ →
[0, 1] on Θ such that:

1) a priori constraint: b0 is the restriction of b to Ω and
2) conditional constraint: the conditional b.f. obtained by

combining b with

bΘ i
: mbΘ i

(Θi)=1 mbΘ i
(A) = 0 ∀A : ∅ ⊆

/
A ⊆

/
Θi

coincide with bi for all i: b ⊕ bΘ i
= bi ∀i = 1, . . . , N .

The hypotheses of Theorem 6 are pictorially summarized in
Fig. 4-right.

In the data association problem, the a priori constraint is the
b.f. representing the estimate of the past association {mk−1

l ↔

3Θ is called a common refinement [1] of a set of frames Θ1 , . . . , ΘN if there
exists a map (refining) ρi : Θi → 2Θ from each frame Θi to a disjoint partition
of Θ: ρi (x) ∩ ρi (x′) = ∅ ∀x, x′ ∈ Θi ;

⋃
x∈Θ i

ρi (x) = Θ. The smallest such
frame is called the minimal refinement Θ1 ⊗ · · · ⊗ ΘN of those frames. Two
b.f.’s b1 , b2 defined on two frames Θ and Ω connected by a refining ρ are said
consistent iff mb1 (A) = mb2 (ρ(A)) ∀A ⊆ Θ and b1 is called the restriction
of b2 to Θ.
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Fig. 4. (Left) Family of frames involved in the data association problem. All the constraints (expressed as b.f.’s) are combined on the common refinement Θ,
and then, projected onto the current-time association frame Θk

M . (Right) The total belief theorem: a b.f. b on Θ such that its restriction to Ω is b0 and whose
combination with bΘ i

(where {Θ1 , . . . , Θn } is the partition of Θ induced by the refining ρ) is bi is desired.

Mj}, defined over Θk−1
k (see Fig. 4-left again). It ensures that

the total b.f. is compatible with the last available estimate.

B. Dempster’s Sum of Convex Combinations

The total belief theorem is only one (even though a critical
one) of the theoretical issues involved by the notion of con-
ditional b.f. In the second part of this paper, we will use the
language of convex geometry that we introduced in the first part
to give a characterization of the notion of conditional b.f. in the
framework of the belief space. As this notion depends inherently
on that of Dempster’s sum, this reduces to study the geometry
of the rule of combination.

We will first prove a fundamental result on Dempster’s sums
of convex combinations, and use it to show that the rule of
combination commutes with the convex closure operator in the
belief space. This will allow us to describe the “global” geometry
of the orthogonal sum in terms of simplices called conditional
subspaces, i.e., the sets of all b.f.’s conditioned by a given b.

Theorem 7: Consider a b.f. b and a collection of b.f.’s
{b1 , . . . , bn} such that at least one of them is combinable with b.
If

∑
i αi = 1, αi ≥ 0 for all i = 1, . . . , n, then b ⊕

∑
i αibi =∑

i βi(b ⊕ bi), where

βi =
αik(b, bi)∑n

j=1 αjk(b, bj )
(17)

and k(b, bi) is the normalization factor for the sum b ⊕ bi :
k(b, bi)

.=
∑

A∩B �=∅ mb(A)mbi
(B).

Proof: We just need to check the equality of the corresponding
basic probability assignments. After denoting by {Bk , k}, the
focal elements of bi and with {Aj , j} those of b, the convex
combination

∑
i βib ⊕ bi has b.p.a. m∑

i
βi b⊕bi

(A) equal to

∑

B⊆A

(−1)|A−B |
∑

i

βib ⊕ bi(B)

=
∑

i

βi

∑

B⊆A

(−1)|A−B |b ⊕ bi(B) =
∑

i

βimb⊕bi
(A)

by Moebius inversion. On the other side, by hypothesis

m∑
i
αi bi

(A)=
∑

B⊆A

(−1)|A−B |
∑

i

αibi(B)

=
∑

i

αi

( ∑

B⊆A

(−1)|A−B |bi(B)
)

=
∑

i

αimbi
(A).

Hence, after calling E1 , . . . , En the focal elements of
∑

i αibi ,
we get

mb⊕
∑

i
αi bi

(A) =

∑
Ek ∩Aj =A m∑

i
αi bi

(Ek )mb(Aj )
∑

Ek ∩Aj �=∅ m∑
i
αi bi

(Ek )mb(Aj )

=

∑
Ek ∩Aj =A

(∑
i αimbi

(Ek )
)
mb(Aj )

∑
Ek ∩Aj �=∅

(∑
i αimbi

(Ek )
)
mb(Aj )

=

∑
i αi

(∑
Ek ∩Aj =A mbi

(Ek )mb(Aj )
)

∑
i αi

(∑
Ek ∩Aj �=∅ mbi

(Ek )mb(Aj )
)

=

∑
i αi

(∑
Bk ∩Aj =A mbi

(Bk )mb(Aj )
)

∑
i αi

(∑
Bk ∩Aj �=∅ mbi

(Bk )mb(Aj )
) (18)

where the last passage holds because mbi
(Ek ) = 0 for Ek �∈

Ebi
, and we are left for each addenda i with the focal elements

Bk ∈ Ebi
of bi . Finally, we just need to note that

mb⊕bi
(A) =

∑
Bk ∩Aj =A mbi

(Bk )mb(Aj )
∑

Bk ∩Aj �=∅ mbi
(Bk )mb(Aj )

.=
Ni(A)
k(b, bi)

.

Plugging this expression in (18), we get

mb⊕
∑

i
αi bi

(A) =
∑

i αiNi(A)
∑

j αjk(b, bj )
=

∑
i αik(b, bi)mb⊕bi

(A)
∑

j αjk(b, bj )

=
∑

i

βimb⊕bi
(A)

with βi given by (17). Now, if there is a b.f. bj in the collection
{b1 , . . . , bn}, which is combinable with b, then k(b, bj ) �= 0
and the denominator of the previous equation is nonzero, i.e.,
mb⊕

∑
i
αi bi

is well defined. �
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Note that since
∑

i βi = 1, βi ≥ 0 ∀i, the combination of b
with any convex sum of b.f.’s is still a convex sum of all partial
combinations.

As an example, let us consider three b.f.’s in the binary frame
b, b1 , b2 with b.p.a.’s

mb(x) = 1 mb1 (x) = 0.7 mb1 (Θ) = 0.3 mb2 (y) = 1.

If we take the following convex combination αb1 + (1 − α)b2 ,
α = 0.6, we have that

mαb1 +(1−α)b2 (x) = 0.42 mαb1 +(1−α)b2 (y) = 0.4

mαb1 +(1−α)b2 (Θ) = 0.18

and its combination with b yields

mb⊕(αb1 +(1−α)b2 )(x) = 1 mb⊕(αb1 +(1−α)b2 )(y) = 0

mb⊕(αb1 +(1−α)b2 )(Θ) = 0

i.e., b ⊕ (αb1 + (1 − α)b2) = bx (the Bayesian b.f. focused
on {x}).

On the other side, Theorem 7 claims that

b ⊕ (αb1 + (1 − α)b2) = β1(b ⊕ b1) + β2(b ⊕ b2)

with β1 = αk(b, b1)/[αk(b, b1) + (1 − α)k(b, b2)], β2 = (1 −
α)k(b, b2)/[αk(b, b1) + (1 − α)k(b, b2)], where k(b, b1) = 1
and k(b, b2) = 0 (as b and b2 are not combinable), so that β1 = 1
and β2 = 0 and

b ⊕ (αb1 + (1 − α)b2) = b ⊕ b1 = b1 = bx.

C. Commutativity of Convex and Dempster’s Combinations

In the geometric approach to the ToE, convex combinations
are the geometric counterparts of basic probability assignments
(Section V). Convex closure and Dempster’s sum are then the
two major operators acting on b.f.’s as points of the belief space.
They are, in fact, inherently related to each other, as they com-
mute, i.e., the order of their action on a set of b.f.’s can be
exchanged. We just need to pay some attention to the issue of
combinability.

Theorem 8: b ⊕ Cl(b1 , . . . , bk ) = Cl(b ⊕ bi1 , . . . , b ⊕ bim
),

where {bi1 , . . . , bim
} ⊆ {b1 , . . . , bk} are all the b.f.’s in the col-

lection {b1 , . . . , bk}, which are combinable with b.
Proof: Sufficiency. We need to prove that if b′ ∈ b ⊕

Cl(b1 , . . . , bk ), then b′ ∈ Cl(b ⊕ bi1 , . . . , b ⊕ bim
). If b′ = b ⊕

∑k
i=1 αibi ,

∑
i αi = 1, αi ≥ 0, then (by Theorem 7) b′ =∑

i βib ⊕ bi with βi given by (17). But, we know that βi = 0 iff
� ∃ b ⊕ bi , so that

b′ =
∑

i:∃b⊕bi

βi(b ⊕ bi) ∈ Cl(b ⊕ bi : ∃b ⊕ bi).

Necessity. We have to show that if b′ ∈ Cl(b ⊕ bi1 , . . . , b ⊕
bim

), then for each choice of bj1 , . . . , bjl
not combinable

with b, b′ ∈ b ⊕ Cl(bi1 , . . . , bim
, bj1 , . . . , bjl

). If
∑m

p=1 αp +

∑l
q=1 αq = 1

b′ = b ⊕
( m∑

p=1

αpbip
+

l∑

q=1

αqbjq

)

=
m∑

p=1

α′
pb ⊕ bip

+
l∑

q=1

α′
q b ⊕ bjq

(19)

with (after introducing the notation kp = k(b, bip
), kq =

k(b, bjq
))

α′
p =

αpkp∑
p αpkp +

∑
q αqkq

α′
q =

αqkq∑
p αpkp +

∑
q αqkq

by (17). But, now kq = 0 ∀q (as bjq
is not combinable with b)

so that α′
q = 0 for all q = 1, . . . , l, and by (19), it follows that

b′ =
m∑

p=1

βp(b ⊕ bip
) ∈ Cl(b ⊕ bi1 , . . . , b ⊕ bim

) (20)

with βp = αpkp/
∑

p αpkp ,
∑

p βp = 1, βp ≥ 0 ∀p. Hence,
any b.f. b′ of the form (20) belongs to the region b ⊕
Cl(bi1 , . . . , bim

, bj1 , . . . , bjl
) iff we can find another collection

of coefficients {αp, p = 1, . . . ,m} with
∑

p αp = 1 such that
the following constraints are met:

βp =
αpkp∑
p αpkp

∀p = 1, . . . ,m (21)

(i.e., b′ = b ⊕
∑

p αpbip
). An admissible solution of the sys-

tem of equations (21) is α̃p
.= βp/kp as we get ∀p βp =

βp/
∑

p βp = βp since the βp ’s sum to one, and system
(21) is satisfied up to the normalization constraint. We can
then normalize the solution by choosing αp = α̃p/

∑
p ′ α̃p ′ =

βp/kp

∑
p ′(βp ′/kp ′) for which (21) is still met. �

An immediate consequence is the following.
Corollary 3: Dempster’s sum ⊕ and convex closure Cl(.)

commute, i.e., if b is combinable with bi ∀i = 1, . . . , k, then
b ⊕ Cl(b1 , . . . , bk ) = Cl(b ⊕ b1 , . . . , b ⊕ bk ).

D. Conditional Subspaces

As basically a linear operator on B, Dempster’s rule com-
mutes with convex closure (Corollary 3). This is of major im-
portance in the framework of the geometric approach, where
all major classes of b.f.’s form some sort of simplex. Using
the aforementioned commutativity results, we can also iden-
tify geometric counterparts of the notions of combinability and
conditioning.

Definition 4: The conditional subspace 〈b〉 associated with a
b.f. b is the set of all the b.f.’s conditioned by b, namely

〈b〉 .=
{
b ⊕ b′,∀b′ ∈ B s.t. ∃ b ⊕ b′

}
. (22)

In rough words, the conditional subspace 〈b〉 is the possi-
ble “future” of b in a process of knowledge accumulation. As
new evidence becomes available in the form of a b.f. (and
is pooled through Dempster’s rule), we get a series of b.f.’s
bt0 , bt0 ⊕ bt1 , bt0 ⊕ bt1 ⊕ bt2 , . . .. The conditional subspace of
the current knowledge state at time t 〈bt0 ⊕ · · · ⊕ bt〉 constrains
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the possible outcomes of the future states of belief. Since b.f.’s
are not necessarily combinable, we need first to understand the
geometry of the notion of combinability.

Definition 5: The noncombinable region NC(b) associated
with a b.f. b is the collection of all the b.f.’s that are not combin-
able with b

NC(b) .= {b′ :� ∃ b′ ⊕ b} = {b′ : k(b, b′) = 0}.
The results of Section V again allow us to understand the

shape of this set. As a matter of fact, the noncombinable region
NC(b) of b is also a simplex, whose vertices are the basis b.f.’s
related to subsets disjoint from the core Cb of b (the union of its
f.e.’s).

Proposition 2: NC(b) = Cl(bA ,A ∩ Cb = ∅).
Proof: It suffices to point out that NC(b) = {b′ : Cb ′ ⊆ Cb} =

{b′ : Eb ′ ⊆ 2C̄b } where B denotes the complement of a subset B
of Θ. But, by Theorem 4: {b′ : Eb ⊆ 2C̄b } = Cl(bA ,A ∈ 2C̄b ) =
Cl(bA : A ⊆ C̄b)} = Cl(bA : A ∩ Cb = ∅). �

Using the definition of noncombinable region NC(b), we can
write

〈b〉 = b ⊕ (B \ NC(b)) = b ⊕ {b′ : Cb ′ ∩ Cb �= ∅}
where \ denotes the set-theoretic difference A \ B = A ∩ B.
Unfortunately, B \ NC(b) does not satisfy Theorem 4. The
collection of b.f.’s in B \ NC(b) cannot be written as a set
of b.f.s with focal elements in a certain list, for instance
{b′ : ∀A ∈ Eb ′ s.t. A ∩ Cb = ∅}. In fact, a b.f. b′ is combin-
able with b (b′ ∈ B \ NC(b)) iff one of its focal elements has
nonempty intersection with Cb , regardless the behavior of the
others. Geometrically, this means that B \ NC(b) is not a sim-
plex. Therefore, we cannot apply the commutativity results of
Section VI-C directly to B \ NC(b) to find the shape of the
conditional subspace. Fortunately, 〈b〉 can indeed be expressed
as a Dempster’s sum of b and a polytope.

Definition 6: The compatible simplex C(b) associated with a
b.f. b is the collection of all b.f.’s whose focal elements are in
the core of b

C(b) .= {b′ : Cb ′ ⊆ Cb} = {b′ : Eb ′ ⊆ 2Cb }.
Now, from Theorem 4, we have the following.
Corollary 4: C(b) = Cl(bA : A ⊆ Cb).
The compatible simplex C(b) is only a proper subset of the

collection of b.f.’s combinable with b, B \ NC(b): nevertheless,
it contains all the relevant information. As a matter of fact, we
have the following.

Theorem 9: 〈b〉 = b ⊕ C(b).
Proof: Let us denote by Eb = {Ai, i} and Eb ′ = {Bj , j} the

lists of focal elements of b and b′, respectively. By defini-
tion, Ai = Ai ∩ Cb so that Bj ∩ Ai = Bj ∩ (Ai ∩ Cb) = (Bj ∩
Cb) ∩ Ai , and once defined a new b.f. b′′ with focal elements
{B′

k , k = 1, . . . , m} .= {Bj ∩ Cb , j = 1, . . . , |Eb ′ |} (note that
m ≤ |Eb ′ | since some intersections may coincide) and basic
probability assignment

mb ′′(B′
k ) =

∑

j :Bj ∩Cb =B ′
k

mb ′(B′
j )

we have that b ⊕ b′ = b ⊕ b′′. �

Fig. 5. Conditional subspace 〈b〉 of a b.f. b in the binary belief space B2 ,
along with its compatible subspace. On the abscissa we have the belief value
b(x) of x, while b(y) is the coordinate of b on the y axis. (Left) If b is not a
basis probability its combinable simplex is B itself, and its conditional subspace
is the triangle Cl(b, bx , by ). (Right) If b is a basis probability, for instance if
b = bx , then the conditional subspace reduces to a single point.

An analogous result can be found in [1]. We are now ready
to understand the convex geometry of conditional subspaces.
From Theorems 4 and 9, it follows that:

Corollary 5: 〈b〉 = Cl(b ⊕ bA ,∀A ⊆ Cb).
Note that, since b ⊕ bCb

= b (where bCb
is the basis b.f. fo-

cused on the core of b), b is always one of the vertices of 〈b〉.
Furthermore, 〈b〉 ⊆ C(b), since the core of a b.f. b is such that [1]
Cb⊕b ′ = Cb ∩ Cb ′ ⊆ Cb .

1) Example: Binary Frame: Fig. 5 shows the actual shape of
a conditional subspace for a b.f. defined on the simplest (binary)
frame Θ2 = {x, y}. For each b.f. b ∈ B2 , b �= bx, by , the non-
combinable subspace is empty NC(b) = ∅, while the compati-
ble subspace coincides with the entire belief space C(b) = B2
since the core of b is Θ itself. The vertices of the conditional
subspace 〈b〉 are then b ⊕ bΘ = b, b ⊕ bx = bx , b ⊕ by = by ,
and 〈b〉 is the simplex depicted in Fig. 5-left.

A singular case takes place when b = bx or b = by (b is a
basis probability assigning mass 1 to {x} or {y}). In that case,
Cb = {x} or {y}, respectively, so that NC(b) = {by}, {bx} and
C(b) = {bx}, {by}, respectively in the two cases. Note that, for
instance, when b = bx , the compatible simplex C(b) = {bx}
is much smaller than the set of b.f.’s combinable with b, B2 \
NC(b) = B2 \ {by}. The conditional subspace then reduces to
a single point 〈b〉 = {bx} or {by} (see Fig. 5-right).

VII. APPLICATIONS AND DEVELOPMENTS

OF THE GEOMETRIC APPROACH

To conclude, it is worth to give a flavor of the possible appli-
cations of the geometric approach to the ToE that we presented
in this paper, together with a hint of the natural future develop-
ments of this framework.

A. Probabilistic Approximation of a Belief Function

One of the original motivations of this work was the proba-
bilistic approximation problem, i.e., the question of finding the
probability that is the “closest” in some sense to a given b.f. b.

1) L1 Distance in the Belief Space: We may consider the
possibility of using the L1 norm to measure distances in the be-
lief space: ‖b − b′‖L1

.=
∑

A⊆Θ |b(A) − b′(A)|. Unfortunately,
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this norm is of no use as all Bayesian b.f.’s consistent with b
have the same L1 distance from b.

Lemma 1: If b dominates b′, b ≥ b′, then Cb ⊆ Cb ′ .
Proof: Obviously, since b(A) ≥ b′(A) for every A ⊆ Θ, that

is true forCb ′ ⊆ Θ too, which is also a subset of Θ. As b′(Cb ′) = 1
we have 1 ≥ b(Cb ′) ≥ 1, i.e., b(Cb ′) = 1. By definition of core
(b(A) = 1 iff A ⊇ C), this is equivalent to Cb ′ ⊇ Cb . �

Theorem 10: If b : 2Θ → [0, 1] is an arbitrary b.f. on a frame
Θ, then the L1 distance between b and any Bayesian b.f. p is the
same for all p ∈ P [b] consistent with b

‖p − b‖L1

.=
∑

A⊆Θ

|p(A) − b(A)|

= 2|Θ\Cb |
[

2|Cb |−1 − 1 −
∑

A⊆
/
Cb

b(A)
]

. (23)

Proof: Lemma 1 guarantees that Cp ⊆ Cb , so that p(A) −
b(A) = 1 − 1 = 0 for A ⊇ Cb . On the other hand, if A ∩ Cb = ∅,
then p(A) − b(A) = 0 − 0 = 0. We are then left with sets that
correspond to unions of nonempty proper subsets of Cb and
arbitrary subsets of C̄b = Θ \ Cb . By definition, if A′ = A ∪ B
with A ⊆

/
Cb , B ⊆ C̄b , we have b(A′) = b(A) (see Theorem 9).

For each A ⊆ Cb , A �= Cb there are 2|Θ\Cb | such subsets A′

containing it, so that

∑

A⊆Θ

|p(A) − b(A)| =
∑

A ′=A∪B,A ⊆
/
Cb ,B⊆C̄b

|p(A′) − b(A′)|

=
∑

A ⊆
/
Cb

2|Θ\Cb ||p(A) − b(A)|

= 2|Θ\Cb |
∑

A ⊆
/
Cb

|p(A) − b(A)|

= 2|Θ\Cb |
[ ∑

A ⊆
/
Cb

p(A) −
∑

A ⊆
/
Cb

b(A)
]

since p(A) ≥ b(A) ∀A. But then, by (6),
∑

A ⊆
/
Cb

p(A) =
2|Cb |−1 − p(Cb) = 2|Cb |−1 − 1, and we get (23). �

2) L2 Distance and Orthogonal Projection: Since the L1
norm is not suitable as a distance between b.f.’s, we can
think of using the standard Euclidean distance ‖b − b′‖L2 =√∑

A⊆Θ |b(A) − b′(A)|2 . The Bayesian simplex P determines

a linear subspace of R
N −2 . It makes sense then to define the

orthogonal projection of a b.f. b onto P . By definition, the or-
thogonal projection π[b] of b onto P is the unique Bayesian
function that minimizes the L2 distance between b and P in the
belief space

π[b] = arg min
p∈P

‖p − b‖L2 = arg min
p∈P

√∑

A⊆Θ

|b(A) − p(A)|2 .

In [46], we studied the problem of finding the expression of
π[b] in terms of the belief values of the original b.f. b, and
proved a number of properties it possesses. In particular, we
showed that the orthogonal projection commutes with convex

combination, π[
∑

i αibi ] =
∑

i αiπ[bi ]
∑

i αi = 1 mirroring a
similar property of the pignistic function.

3) Approximation Criterion Based on Dempster’S Rule: Of
course, many different optimization criteria can be proposed,
yielding distinct approximation problems. However, the rule of
combination is central in the ToE: b.f.’s are useful only when
combined with others in a reasoning process. It is natural to
think that this should be taken into account when tackling the
approximation problem. A possible way to comply is to formu-
late an optimization problem based on the “external” behavior
of the desired approximation.

Criterion: A good approximation of a b.f., when combined
with any other b.f., must produce results similar to those ob-
tained by combining the original b.f.

Analytically, this translates as the following optimization
problem:

b̂ = arg min
b ′′∈A

∫

b ′∈B
dist(b ⊕ b′, b′′ ⊕ b′)db′ (24)

where b is the original b.f. to approximate, b′ ∈ B is an arbi-
trary b.f. on the same frame, dist is some distance function,
and A is the class of b.f.’s that the approximation belongs
to. The role of ⊕ can be played by any other meaningful
operator, like, for instance, the disjunctive rule of combina-
tion for unnormalized b.f.’s [47]. Possibly, the resulting ap-
proximation should be independent from the choice of the
distance actually used in (24). Let us consider, in particular,
the class A = P of all Bayesian b.f.’s. As the relative plausi-
bility of singletons [20] p̃lb(x) .= plb(x)/

∑
y∈Θ plb(y) (where

plb(A) = 1 − b(Ac)) perfectly represents b when combined
with any Bayesian b.f. (b ⊕ p = p̃lb ⊕ p ∀p ∈ P), the modi-
fied version of (24) in which the original b.f. is combined with
Bayesian b.f.’s only is trivially solved by p̃lb

p̃lb = arg min
p∈P

∫

p ′∈P
‖b ⊕ p′ − p ⊕ p′‖dp′ (25)

whatever the norm we choose, as b ⊕ p′ − p̃lb ⊕ p′ = 0 ∀p′. It is
then natural to conjecture that the relative plausibility function
could be the solution of the general approximation problem (24),
too. We will work on this conjecture in the near future.

B. Geometry of Possibility Measures

Consonant b.f.’s are b.f.’s whose focal elements are nested:
they are the counterparts in the ToE of possibility measures [48].
All possible lists of f.e.’s associated with consonant b.f.’s then
correspond to all possible chains of subsets A1 ⊂ · · · ⊂ Am

of Θ. Theorem 4 implies that all b.f.’s whose focal ele-
ments belong to a chain X = {A1 , . . . , Am} form the simplex
Cl(bA 1 , . . . , bAm

). The region of the belief space formed by
consonant b.f.’s is then the union of a collection of convex com-
ponents, each associated with a different maximal chain A

CO =
⋃

A=A 1 ⊂...⊂An

Cl(bA 1 , . . . , bAn
).

The number of convex components of CO is then the number
of maximal chains in 2Θ , i.e.,

∏n
k=1(

k
1 ) = n!. Since the length
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of a maximal chain is the cardinality n of Θ, the dimension of
these convex components is dim Cl(bA 1 , . . . , bAn

) = n − 1.
In [49], we showed that CO has the form of a simplicial

complex, i.e., a collection of simplices such that: 1) if a simplex
belongs to the collection, then all its faces of any dimension
also belong to it and 2) the intersection of two simplices is
a face of both. The geometric description of consonant b.f.’s
pictures then a sort of duality between probability and possibility
measures, represented by the dichotomy simplex—simplicial
complex. It is not hard to show that this is due to the special
relation between those measures and the norms L1 and L∞,
respectively, as probability and possibility of an event A are

P (A) =
∑

x∈A

P (x) Pos(A) = max
x∈A

Pos(x).

Recalling Section VII-A, the duality principle would then imply
to choose as possibilistic approximation (see also [50] and [51])
of a b.f. b, according to the optimization criterion (24), the unique
consonant b.f. c with plausibility

plc(A) =
maxx∈A plb(x)
maxx∈Θ plb(x)

. (26)

A formal proof of this conjecture will be object of future work.

C. Canonical Decomposition

A separable support function is a b.f. that is either a simple
support b.f., or is equal to the orthogonal sum of two or more sim-
ple support functions, namely, b = b1 ⊕ · · · ⊕ bn where n ≥ 1,
and bi is a simple support b.f. ∀i = 1, . . . , n. Separable support
functions can be decomposed in different ways. However [1],
we have the following.

Proposition 3: If b �= bΘ is a nonvacuous separable support
function with core Cb , then there exists a unique collection
b1 , . . . , bn of nonvacuous simple support functions satisfying
the following conditions: 1) n ≥ 1; 2) b = b1 if n = 1, and
b = b1 ⊕ · · · ⊕ bn if n ≥ 1; 3) Cbi

⊆ Cb ; and 4) Cbi
�= Cbj

if
i �= j.

This unique decomposition is called canonical decomposi-
tion. Smets [52] and Kramosil [53] solved the canonical decom-
position problem by means of algebraic and measure-theoretic
methods, respectively. Schubert [54] has also studied the is-
sue. We can nevertheless think of using our knowledge of the
shape of conditional subspaces (Theorem 9) to find the sim-
ple components of a separable b.f. b. It is indeed quite easy
to note that in the binary case (b ∈ B2), the simple com-
ponents ex, ey of a separable support b.f. can be expressed
as ex = Cl(b, b ⊕ by ) ∩ Cl(bΘ , bx) = Cl(b, by ) ∩ Cl(bΘ , bx),
ey = Cl(b, bx) ∩ Cl(bΘ , by ) (see Fig. 6), and have coordinates

ex =
[

mb(x)
1 − mb(y)

, 0
]′

ey =
[

0,
mb(y)

1 − mb(x)

]′
.

A general geometric proof of the solution looks then well within
reach.

Fig. 6. Canonical decomposition of a separable support b.f. in the binary belief
space.

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we introduced a geometric approach to the ToE
in which b.f.’s are thought of as points of a Cartesian space. Start-
ing from the insight provided by the binary case, we proved the
convexity of the belief space, and showed that B has, in fact, the
form of a simplex. We proved an important result on Dempster’s
sums of convex combinations, and used it as a tool to show that
the rule of combination commutes with the convex closure op-
erator in the belief space. This finally allowed us to describe the
“global” geometry of the orthogonal sum in terms of simplices
called conditional subspaces. Straightforward applications of
the presented approach are among others the probabilistic ap-
proximation problem and the canonical decomposition of a b.f.
into simple support b.f.’s, while a natural prosecution of the re-
search is the study of the pointwise behavior of Dempster’s rule.
In a wider context, a description of the geometry of possibility
measures or consonant b.f.’s can be seen as a first step toward a
unified geometric interpretations of uncertainty measures.
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