Alternative formulations of the theory of evidence

Fabio Cuzzolin

Oxford Brookes Vision Group

Oxford Brookes University

19/12/2008
Outline

- Uncertainty measures
- Belief functions as sum functions
- Plausibilities and commonalities
- Geometric interpretation
- Plausibilities and commonalities as sum functions
Uncertainty measures

- classical probability: probability distribution
- realistic assumption: evidence is not sufficient to determine this probability
- **constraint** on this unknown, true probability
- different constraints <-> different measures

- interval probabilities, credal sets
Belief functions as constraints

- **belief function** → special case of constraint
- interpretation: mass $m(A)$ can “float” inside A

$$m_b(\{x, y\}) = \frac{2}{3}, \quad m_b(\{y, z\}) = \frac{1}{3}$$

- corresponds to a set of probabilities **consistent** with the belief function
Belief functions as sum functions

• given the basic belief assignment \(m \) ...
• the belief value of an event \(A \) is

\[
b(A) = \sum_{B \subset A} m(B)
\]

• \(b \) has the form of sum function (~integral)
• \(m \) is the Moebius inverse of \(b \) (~derivative)
• \(m \) is normalized and non-negative
Three equivalent formulations

- **belief function** $b(A)$
 - is the lower bound to the probability of A for a probability consistent with b

- **plausibility function** $pl(A)$
 - is the upper bound to the probability of A for a consistent probability

- **commonality function** $Q(A)$
 - amount of evidence that equally supports all the elements of A
Difference between belief, plausibility and commonality

- $b(x,y) = \sum_{A \subseteq \{x,y\}} m(A) = m(x) = \frac{1}{3}$
 (sure support)

- $pl(x,y) = \sum_{A \cap \{x,y\} \neq \emptyset} m(A) = m(x) + m(x,y,z) = \frac{1}{3} + \frac{2}{3} = 1$
 (not surely against)

- $Q(x,y) = \sum_{A \supseteq \{x,y\}} m(A) = m(x,y,z) = \frac{2}{3}$
Moebius inversion

- belief function are sum functions
- analogous of integral in calculus
- **derivative = Moebius inversion**

\[
b(A) = \sum_{B \subseteq A} m_b(B)
\]

\[
m_b(A) = \sum_{B \subseteq A} (-1)^{|A-B|} b(B)
\]

b.b.a.

<table>
<thead>
<tr>
<th>belief function</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>plausibility function</td>
<td>?</td>
</tr>
<tr>
<td>commonality function</td>
<td>?</td>
</tr>
</tbody>
</table>
Geometric solution

- how can you prove this?
- move the problem to a geometric setup

- Moebius inverses \leftrightarrow simplicial coordinates
- equivalence of functions \leftrightarrow congruence of simplices
A geometric approach to uncertainty

- belief space: the space of all the belief functions on a given frame

- it has the shape of a simplex
Belief functions as points

- If $n=|\Theta|=2$, a belief function b is specified by $b(x)$ and $b(y)$.
- As for all bfs, $b(\emptyset)=0$ and $b(\Theta)=1$.
- Belief functions can be seen as points of a Cartesian space of dimension 2^n-2.
Congruent simplices

- Plausibility functions $pl(A)$ live in a simplex too.
- Geometrically, they form congruent simplices.
- Same is true for commonality functions $Q(A)$.
Moebius inverse as simplicial coordinates

- Coordinates of b in B given by the b.b.a. m

- Coordinates of pl in PL given by its Moebius inverse μ
Equivalent theories

- they all have a Moebius inverse

Belief function

\[m_b(A) = \sum_{B \subseteq A} (-1)^{|A-B|} b(B) \]

Plausibility function

\[\mu_b(A) = \sum_{B \subseteq A} (-1)^{|A-B|} pl_b(B) \]

Commonality function

\[q_b(B) = \sum_{\emptyset \subseteq C \subseteq B} (-1)^{|B\setminus A|} Q_b(A) \]

alternative formulations of the theory can be given in terms of such assignments
Congruence and equivalence

- the spaces where belief, plausibility and commonality functions live ...
- ... are all simplices
- ... are all congruent

- geometrically, congruence is the counterpart of equivalence!
how to transform a measure of a certain family into a different uncertainty measure → can be done geometrically

- probabilities, fuzzy sets, possibilities are all **special cases** of b.f.s

the approximation problem can be posed in the geometric approach [IEEE SMC-B07]

- pignistic function BetP as barycenter of $P[b]$
- orthogonal projection $\pi[b]$
- intersection probability $p[b]$
Intersection probability

- It is derived from geometric arguments [IEEE SMC-B07]
- But is inherently associated with probability intervals

\[p(x) = b(x) + \alpha (pl(x) - b(x)) \]
Conclusions

- belief functions are sum functions
- their Moebius inverse m gives their coordinates in a simplex
- plausibility and commonality functions carry the same information
- they also live in a simplex
- their coordinate there is their Moebius inverse
- they are also sum functions
- equivalence is congruence
- applications to approximation problem, decomposition