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Abstract. In this paper we introduce indeed two alternative formula-
tions of the theory of evidence by proving that both plausibility and
commonality functions share the same combinatorial structure of sum
function of belief functions, and computing their Moebius inverses called
basic plausibility and commonality assignments. The equivalence of the
associated formulations of the ToE is mirrored by the geometric congru-
ence of the related simplices. Applications to the probabilistic approxi-
mation problem are briefly presented.

1 Introduction

The theory of evidence (ToE) is one of the most popular uncertainty theory [1,
2], in which subjective probability is represented by belief function (b.f.) rather
than a Bayesian mass distribution, assigning probability values to sets of possi-
bilities rather than single events. Variants or continuous extensions of the ToE
in terms of hints [3] or allocations of probability [4] have since been proposed.
From a combinatorial point of view, in their finite incarnation, b.f.s are sum
functions, i.e. functions on the power set 2Θ = {A ⊆ Θ} of a finite domain
Θ b(A) =

∑
B⊆A mb(B) induced by a basic probability assignment (b.p.a.)

mb : 2Θ → [0, 1] which is combinatorially the Moebius inverse [5] of b. The
same evidence associated with a b.f. is carried by the related plausibility (pl.f.)
plb(A) = 1−b(Ac) and commonality Qb(A) =

∑
B⊇A mb(B) (comm.f.) functions,

which lack though a similar coherent mathematical characterization.
In this paper we introduce indeed two alternative formulations of the theory

of evidence by proving that both pl.f.s and comm.f.s share the same combina-
torial structure of sum function, and computing their Moebius inverses which is
natural to call basic plausibility and commonality assignments. We achieve this
by resorting to a recent geometric approach to the theory of evidence [6] in which
belief functions are represented by points of a Cartesian space. Besides giving
the overall mathematical structure of the theory of evidence a more elegant sym-
metry, the notions of b.pl.a.s and b.comm.a.s turn out to be useful when solving
problems like finding probabilistic approximations [7–9] of belief functions, or
computing the canonical decomposition of support functions. Moreover, as they
are discovered through geometric methods, basic plausibility and commonality



assignments inherit the same simplicial geometry as that of b.f.s.
The novel contributions of this paper are then the proofs that:

– commonality functions have a Moebius inverse that we call basic common-
ality assignment (Theorem 1), the study of its properties and geometries
(Theorems 2 and 3);

– the equivalence of the alternative formulations of the ToE is geometrically
mirrored by the congruence of the corresponding simplices (Theorem 4);

To support the usefulness of these alternative formulations, some applications of
basic plausibility assignments to the approximation problem are discussed. We
first recall the basic notions of the ToE and its geometric approach.

2 Belief, plausibility, and commonality functions

Even though belief functions can be given several alternative but equivalent def-
initions in terms of multi-valued mappings, random sets [10, 11], inner measures
[12], in Shafer’s formulation [1] a central role is played by the notion of ”basic
probability assignment”. A basic probability assignment (b.p.a.) over a finite set
(frame of discernment [1]) Θ is a function m : 2Θ → [0, 1] on its power set
2Θ = {A ⊂ Θ} such that m(∅) = 0,

∑
A⊆Θ m(A) = 1, m(A) ≥ 0 ∀A ⊂ Θ.

Subsets of Θ associated with non-zero values of m are called focal elements.
The belief function (b.f.) b : 2Θ → [0, 1] associated with a b.p.a. mb is

b(A) =
∑

B⊆A

mb(B). (1)

A finite probability or Bayesian belief function is a special b.f. assigning non-
zero masses only to singletons : mb(A) = 0, |A| > 1.
Functions of the form (1) on a partially ordered set are called sum functions [5].
A belief function b is then the sum function associated with a basic probability
assignment mb on the partially ordered set (2Θ,⊆).
Conversely, the unique basic probability assignment mb associated with a given
belief function b can be recovered by means of the Moebius inversion formula

mb(A) =
∑

B⊆A

(−1)|A−B|b(B). (2)

A sum function can be seen as the discrete counterpart of the indefinite integral
in calculus, and Moebius inversion as the discrete counterpart of the derivative.

A dual mathematical representation of the evidence encoded by a belief func-
tion b is the plausibility function (pl.f.) plb : 2Θ → [0, 1], A 7→ plb(A), where

plb(A) .= 1− b(Ac) = 1−
∑

B⊆Ac

mb(B) =
∑

B∩A 6=∅
mb(B)

expresses the amount of evidence not against A.



A third mathematical model of the evidence carried by a b.f. is represented
by the commonality function (comm.f.) Qb : 2Θ → [0, 1], A 7→ Qb(A), where the
commonality number Qb(A) can be interpreted as the amount of mass which can
move freely through the entire event A,

Qb(A) .=
∑

B⊇A

mb(B). (3)

Example. Let us consider a b.f. b on a frame of size 3, Θ = {x, y, z} with b.p.a.
(see Figure 1) mb(x) = 1/3, mb(Θ) = 2/3. The belief values of b on all possible

�

Θ 

x 
y z 

m = 1/3 

m = 2/3 

A = {x,y} 

Fig. 1. The belief function of the example has two focal elements, {x} and Θ.

events of Θ are (Eq. 1): b(x) = mb(x) = 1/3, b(y) = b(z) = 0, b(Θ) = mb(x) +
mb(Θ) = 1, b({x, y}) = mb(x) = 1/3, b({x, z}) = mb(x) = 1/3, b({y, z}) =
0. To appreciate the difference between belief, plausibility, and commonality
let us consider in particular the event A = {x, y}. Its belief value b({x, y}) =∑

A⊆{x,y}mb(A) = mb(x) = 1/3 represents the amount of evidence which surely
support {x, y} as it counts all the events which imply {x, y} On the other side,
plb({x, y}) = 1 − b({x, y}c) = 1 − b(z) = 1 measures the evidence not surely
against it, as it counts all the events which no not imply its complement {x, y}c.
Finally, the commonality number Qb({x, y}) =

∑
A⊇{x,y}mb(A) = mb(Θ) = 2/3

tells us which is the amount of evidence which can (possibly) equally support each
of the outcomes in {x, y} (i.e. x and y), as the evidence represented by events
A ⊇ {x, y} can focus on both elements.

3 Two alternative formulations of the ToE

As plausibility and commonality functions are both equivalent representations of
the evidence carried by a belief function, it is natural to guess that they should
share the form of sum function on the power set 2Θ.
We can indeed use results and tools provided by the geometric interpretation
of the ToE to develop alternative models of uncertainty which are parallel to
the standard formulation of the ToE. Evidence is there represented by cumulat-
ing basic probabilities on intervals of events {B ⊆ A} (yielding a belief value
b(A) =

∑
B⊆A m(B)). Equivalently we can represent pieces of evidence as basic



plausibility (commonality) assignments on the power set, and compute the re-
lated plausibility (commonality) set function by adding basic assignments over
intervals. Let us first recall the geometry of belief measures.

Belief space. A b.f. b : 2Θ → [0, 1] on a frame of discernment Θ is completely
specified by its N − 2 belief values {b(A), ∅ ( A ( Θ}, N

.= 2|Θ| (since b(∅) = 0,
b(Θ) = 1 always). It can then be represented as a point of RN−2 like

b =
∑

∅(A(Θ

b(A)vA

where {vA : ∅ ( A ⊆ Θ} is a reference frame in RN−2. The set of points B of
RN−1 which correspond to a b.f. is called ”belief space” [6], i.e. the simplex

B = Cl(bA, ∅ ( A ⊆ Θ),

where bA is the unique belief function assigning all the mass to a single subset A
of Θ (A-th dogmatic belief function), and Cl denotes the convex closure operator:
Cl(b1, ..., bk) = {b ∈ B : b = α1b1 + · · ·+ αkbk,

∑
i αi = 1, αi ≥ 0 ∀i}. The faces

of a simplex Cl(b1, ..., bk) are all possible simplices generated by a subset of its
vertices. Each b.f. b ∈ B can be written as a convex sum as follows:

b =
∑

∅(A⊆Θ

mb(A)bA. (4)

A b.p.a. (the Moebius inverse of a belief function) is then the set of simplicial
coordinates of b in B: The simplicial form of B is the geometric counterpart of
the nature of b.f.s as sum functions. The set P of all Bayesian b.f.s is the simplex
formed by all dogmatic b.f.s associated with singletons: P = Cl(b{x}, x ∈ Θ).

Binary case. Consider as an example a frame of discernment with just two
elements Θ2 = {x, y}. Each b.f. b : 2Θ2 → [0, 1] is completely determined by its
belief values b(x), b(y) (since b(∅) = 0, b(Θ) = 1 for all b). This means that we
can represent b as the vector

b(x)vx + b(x)vy = [b(x), b(y)]′ = [mb(x),mb(y)]′ ∈ R2. (5)

where vx = [1, 0]′ is the versor of the x axis, and vy = [0, 1]′ that of the y axis.
Since mb(x) ≥ 0, mb(y) ≥ 0, and mb(x) + mb(y) ≤ 1 the set B2 of all the
possible belief functions on Θ2 is the triangle in the Cartesian plane of Figure
2, whose vertices are the vacuous belief function bΘ = [0, 0]′ with mbΘ

(Θ) = 1,
the Bayesian b.f. bx = [1, 0]′ with mbx(x) = 1, and the Bayesian b.f. by = [0, 1]′

with mby (y) = 1. Bayesian b.f.s on Θ2 obey the constraint mb(x) + mb(y) = 1
and form then the points of the segment P2 joining bx = [1, 0]′ and by = [0, 1]′.
In the binary case each b.f. b decomposes according to Equation (4) as

b = mb(x)bx + mb(y)by.

Change of reference frame. In the case of a general domain Θ, the dogmatic
belief functions {bA : ∅ ( A ( Θ} form a set of independent vectors in RN−2, so
that the collections {vA} and {bA} represent two distinct coordinate frames in
B. We can then compute the transformation linking them [13].
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Fig. 2. The belief space B for a binary frame is a triangle in R2 whose vertices are the
dogmatic b.f.s focused on {x}, {y} and Θ, bx, by, bΘ respectively. The probability region
is the segment P = Cl(bx, by). Belief and plausibility functions lie on opposite loca-
tions with respect to P. The line a(b, plb) joining them intersect P in the intersection
probability p[b] (Section 5).

Lemma 1. The two coordinate frames {vA : ∅ ( A ( Θ} and {bA : ∅ ( A ( Θ}
are linked by the relation vA =

∑
B⊇A(−1)|B\A|bB.

3.1 Basic plausibility assignment

The geometry of belief measures can be exploited to prove the structure of
sum function of both plausibility and commonality functions, establishing this
way two equivalent formulations of the ToE in terms of basic plausibilities and
commonalities. To get there we need to compute the Moebius inverse of pl.f.s
and comm.f.s respectively.

Plausibility space. Plausibility functions are indeed also completely spec-
ified by their N − 2 plausibility values {plb(A), ∅ ( A ( Θ} and can then be
represented in the same reference frames as before as

plb =
∑

∅(A(Θ

plb(A)vA ∈ RN−2. (6)

It can be proved that [13]

Proposition 1. The region PL of RN−2 whose points correspond to admissible
pl.f.s is a simplex PL = Cl(plA, ∅ ( A ⊆ Θ) whose vertices are given by plA =
−∑

∅(B⊆A(−1)|B|bB, and represent the plausibility functions associated with all
dogmatic belief functions bA: plA = plbA .



Figure 2 shows the geometry of belief and plausibility spaces for a binary
frame Θ2 = {x, y}, where pl.f.s are also vectors of R2: plb = [plb(x) = 1 −
mb(y), plb(y) = 1 − mb(x)]′. The two simplices B = Cl(bΘ = 0, bx, by), PL =
Cl(plΘ = 1, plx = bx, ply = by) are symmetric with respect to the segment of
all probability measures P and congruent, so that they can be moved onto each
other by means of a rigid transformation.

Plausibility assignment. We can use Lemma 1 to compute the Moebius
inverse of a pl.f., by putting (6) in the same form as Equation (4). We get that
plb =

∑
∅(A⊆Θ µb(A)bA, where

µb(A) .=
∑

B⊆A

(−1)|A−B|plb(B). (7)

It is natural to call the function µb : 2Θ → R defined by expression (7) basic
plausibility assignment (b.pl.a.). By comparing (7) with the Moebius formula for
b.f.s (2) it is easy to recognize the Moebius equation for plausibilities: hence

plb(A) =
∑

B⊆A

µb(B). (8)

PL.F.s are then sum functions on 2Θ of the form (8), whose Moebius inverse is
the b.pl.a. (7). Basic probabilities and plausibilities are obviously related.

Proposition 2. µb(A) = (−1)|A|+1
∑

C⊇A mb(C) for A 6= ∅, µb(∅) = 0.

As b.p.a.s do, basic plausibility assignments meet the normalization con-
straint. In other words, pl.f.s are normalized sum functions [5].
However, µb(A) is not always positive on all events A ⊆ Θ.

Example. Let us consider as an example a b.f. b on the binary frame Θ2 =
{x, y} with b.p.a. mb(x) = 1

3 , mb(Θ) = 2
3 . The corresponding pl. vector is

plb = [plb(x), plb(y)]′ = [1− b({x}c), 1− b({y}c)]′ = [1, 2/3]′.

Using Equation (7) we can compute its b.pl.a. as

µb(x) = (−1)|x|+1
∑

C⊇x

mb(C) = (−1)2(mb(x) + mb(Θ)) = 1,

µb(y) = (−1)|y|+1
∑

C⊇y

mb(C) = (−1)2mb(Θ) = 2/3,

µb(Θ) = (−1)|Θ|+1
∑

C⊇Θ

mb(C) = (−1)mb(Θ = −2/3 < 0

confirming that b.pl.a. meet the normalization but not the positivity constraint.

3.2 Basic commonality assignment

It is straightforward to prove that commonality functions are also sum functions
and possess some interesting similarities with pl.f.s. They present though some
peculiarities we need to take care of. We know that b.f.s and pl.f.s are such that

b(∅) = plb(∅) = 0, b(Θ) = plb(Θ) = 1;



in other words, both b and plb can be represented by vectors with N − 2 coordi-
nates as we have previously seen. On the other side

Qb(∅) =
∑

A⊇∅
mb(A) =

∑

A⊆Θ

mb(A) = 1, Qb(Θ) =
∑

A⊇Θ

mb(A) = mb(Θ)

so that Qb needs N coordinates to be represented (even though the dimension
of Q is still N − 2). A comm.f. corresponds then to a vector of RN = R2|Θ|

Qb =
∑

∅⊆A⊆Θ

Qb(A)vA

where {vA : ∅ ⊆ A ⊆ Θ} is an extended reference frame in RN (A = Θ, ∅ this
time included).
Commonality assignment. We can as before express Qb as a sum function by
computing its Moebius inverse. We can use Lemma 1 to change the coordinate
base and get the coordinates of Qb with respect to the base {bA, ∅ ⊆ A ⊆ Θ}:

Qb =
∑

∅⊆A⊆Θ

Qb(A)
( ∑

B⊇A

bB(−1)|B\A|
)

=
∑

∅⊆B⊆Θ

bB

( ∑

A⊆B

(−1)|B\A|Qb(A)
)

=
∑

∅⊆B⊆Θ

qb(B)bB

i.e. Qb is a sum function with Moebius inverse qb : 2Θ → [0, 1], B 7→ qb(B) with

qb(B) =
∑

∅⊆A⊆B

(−1)|B\A|Qb(A)

which we can call basic commonality assignment (b.comm.a.).
qb has an interesting interpretation in terms of belief values.

Theorem 1. qb(B) = (−1)|B|b(Bc).

Proof.

qb(B) =
∑

∅⊆A⊆B

(−1)|B\A|
( ∑

C⊇A

mb(C)
)

=
∑

∅(A⊆B

(−1)|B\A|
( ∑

C⊇A

mb(C)
)
+

+(−1)|B|−|∅|
∑

C⊇∅
mb(C) =

∑

B∩C 6=∅
mb(C)

( ∑

∅(A⊆B∩C

(−1)|B\A|
)

+ (−1)|B|.

But now, since B \A = B \ C + B ∩ C \A, we have that
∑

∅(A⊆B∩C

(−1)|B\A| = (−1)|B\C|
∑

∅(A⊆B∩C

(−1)|B∩C|−|A|

= (−1)|B\C|[(1− 1)|B∩C| − (−1)|B∩C|−|∅|] = (−1)|B|+1

so that the b.comm.a. qb(B) can be expressed as

qb(B) = (−1)|B|+1
∑

B∩C 6=∅
mb(C) + (−1)|B| = (−1)|B|(1−

∑

B∩C 6=∅
mb(C)) = (9)

= (−1)|B|(1− plb(B)) i.e. we have as desired. Note that qb(∅) = (−1)|∅|b(∅) = 1.



Properties of basic commonality assignments. Basic commonality as-
signments are not normalized, as

∑

∅⊆B⊆Θ

qb(B) = Qb(Θ) = mb(Θ).

In other words, whereas belief functions are normalized sum functions (n.s.f.)
with non-negative Moebius inverse, and plausibility functions are normalized
sum functions, commonality functions are unnormalized sum functions.
Going back to the above example, the b.comm.a. associated with mb(x) = 1/3,
mb(Θ) = 2/3 is (by Equation (9))

qb(∅) = (−1)|∅|b(Θ) = 1, qb(x) = (−1)|x|b(y) = −mb(y) = 0,

qb(y) = (−1)|y|b(x) = −mb(x) = −1/3, qb(Θ) = (−1)|Θ|b(∅) = 0

so that
∑
∅⊆B⊆Θ qb(B) = 2/3 = mb(Θ) = Qb(Θ).

Commonality space. Analogously to the case of belief and plausibility
functions, we can use here the notion of basic commonality assignment (Theorem
1) to recover the shape of the space Q ⊂ RN of all commonality functions, or
”commonality space”.

Theorem 2. The commonality space Q is a simplex

Q = Cl(QA, ∅ ( A ⊆ Θ)

whose vertices are
QA

.=
∑

∅⊆B⊆Ac

(−1)|B|bB . (10)

Proof.

Qb =
∑

∅⊆B⊆Θ

(−1)|B|bB

( ∑

∅⊆A⊆Bc

mb(A)
)

=
∑

∅⊆A⊆Θ

mb(A)
( ∑

∅⊆B⊆Ac

(−1)|B|bB

)

=
∑

∅⊆A⊆Θ

mb(A)QA

with QA given by Equation (10). ¤

Theorem 3. QA is the commonality function associated with the dogmatic belief
function bA, i.e.

QbA
=

∑

∅⊆B⊆Θ

qbA
(B)bB .

Proof. Indeed qbA(B) = (−1)|B| if Bc ⊇ A i.e. B ⊆ Ac, while qbA(B) = 0
otherwise, so that QbA =

∑
∅⊆B⊆Ac(−1)|B|bB = QA and the two quantities

coincide. ¤
Binary case. In the binary case Q2 needs N − 1 = 3 coordinates to be

represented. We have indeed Qb(∅) = 1, Qb(x) =
∑

A⊇{x}mb(A) = plb(x),
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Fig. 3. Commonality space in the binary case.

Qb(y) =
∑

A⊇{y}mb(A) = plb(y), and Qb(Θ) = mb(Θ).
If we neglect the coordinate Qb(∅) which is constant ∀b, the commonality space
Q2 can then be drawn as in Figure 3. The vertices of Q2 are, according to
Equation (10) and using all N coordinates, QΘ = b∅ = [1111]′,

Qx =
∑

∅⊆B⊆{y}
(−1)|B|bB = b∅ − by = [1111]′ − [0011]′ = [1100]′ = Qbx

Qy =
∑

∅⊆B⊆{x}
(−1)|B|bB = b∅ − bx = [1111]′ − [0101]′ = [1010]′ = Qby .

4 Congruence of equivalent models

The equivalence of the three models based on basic probability, plausibility, and
commonality assignments as descriptions of uncertainty geometrically translates
as congruence of the associated simplices.
We saw that for binary frames, B and PL are congruent, i.e. they can be super-
posed by means of a rigid transformation. This is indeed a general property.

Lemma 2. The corresponding 1-dimensional sides Cl(bA, bB) and Cl(plA, plB)
of belief and plausibility spaces are congruent, namely

‖plB − plA‖p = ‖bA − bB‖p

where ‖‖p denotes the classical norm ‖v‖p
.=

√∑N
i=1 |vi|p, for all p = 1, 2, ..., +∞.

Proof. This a direct consequence of the definition of plausibility function. Let
us denote with C, D two generic subsets of Θ. As plA(C) = 1− bA(Cc) we have
bA(Cc) = 1− plA(C), which implies

bA(Cc)− bB(Cc) = 1− plA(C)− 1 + plB(C) = plB(C)− plA(C).



This in turn means that
∑

C⊂Θ

|plB(C)− plA(C)|p =
∑

C⊂Θ

|bA(Cc)− bB(Cc)|p =
∑

D⊂Θ

|bA(D)− bB(D)|p ∀p.

A straightforward implication is then that

Theorem 4. B and PL are congruent.

as their corresponding 1-dimensional faces have the same length. This is due
to the generalization of a well-known Euclid’s theorem stating that triangles
with sides of the same length are congruent.2

The situation is a bit more complicated for plausibility and commonality
spaces, but we can still prove that Q and PL are congruent in the case of
unnormalized belief functions [14].

5 Applications of basic plausibility assignments

Besides being a natural complement to the mathematical apparatus of the theory
of evidence, these alternative models of the ToE and the related basic assign-
ments can actually be useful in the solution of practical problems. This is true
when dealing with plausibility functions as we can recur to their equivalent ba-
sic assignments and operate on them. In particular, it becomes necessary when
we need to apply combination rules for the aggregation of evidence to those
plausibility functions.

Relative belief of singletons. The problem of approximating a given belief
function with a probability, for instance, has been studied by many researchers
[7, 8, 15]. The “relative plausibility of singletons”

p̃lb(x) =
plb(x)∑

y∈Θ plb(y)
,

in particular, is an interesting candidate as it can be proven that it commutes
with Dempster’s combination ⊕ [2, 15] and it perfectly represents a belief func-
tion when combined with a probability: p̃lb ⊕ p = b⊕ p for all p ∈ P.

Definition 1. The Dempster’s sum of two belief functions b1, b2 on the same
frame Θ is a new belief function b1 ⊕ b2 on Θ with b.p.a.

mb1⊕b2(A) =
∑

B∩C=A mb1(B) mb2(C)∑
B∩C 6=∅mb1(B) mb2(C)

(11)

where mbi denotes the b.p.a. associated with bi.

2 Note that this holds for simplices but not for polytopes in general, think of a square
and a rhombus with sides of length 1.



However, as belief and plausibilities are dual representations of the same
evidence, a dual probability can be defined as the relative belief of singletons

b̃(x) .=
b(x)∑

y∈Θ b(y)
. (12)

We can prove that b̃ meets a set of dual properties with respect to ⊕, which are
the dual of those of p̃lb [8, 15]. These dual properties involve the Dempster’s sum
of plausibility functions (instead of belief functions).
This should not surprise at this point. We have proven in Section 3.1 that plausi-
bility functions are themselves sum functions, which admit a Moebius inverse: the
basic plausibility assignment. But then nothing prevents from applying Equation
(11) to the b.pl.a.s of a pair of plausibility functions, instead of belief functions.
We can then easily prove that

Proposition 3. The relative belief of singletons b̃ represents perfectly the cor-
responding plausibility function plb when combined with any probability through
(extended) Dempster’s rule: b̃⊕ p = plb ⊕ p ∀p ∈ P.

Intersection probability. From a different point of view, each belief func-
tion determines an “interval probability”, i.e. a set of probability measures
p : Θ → [0, 1] on the same domain Θ which meet a lower bound associated
with the belief values on all outcomes x ∈ Θ, and an upper bound determined
by the corresponding plausibility values:

(b, plb)
.=

{
b(x) ≤ p(x) ≤ plb(x),∀x ∈ Θ

}
. (13)

Now, there are clearly many ways of selecting one of those measures as represen-
tative of the above interval probability. However, as each interval [b(x), plb(x)]
has the same weight in the interval probability, there is no reason for the differ-
ent singletons x to be treated differently.
Mathematically this translates into seeking the unique probability p[b] such that

p[b](x) = b(x) + α(plb(x)− b(x)), α ∈ [0, 1].

This function has been called intersection probability [16], as it is geometrically
located on the segment joining a pair of belief-plausibility functions. The sit-
uation is clearly visible in the binary case of Figure 2, where the line a(b, plb)
joining such a pair is drawn: p[b] lies at the intersection of this line with the
region P of all probability functions.
Again, as linear combination of a b.f. and a pl.f., its analysis requires the Moebius
inversion of plb [16].

6 Conclusions

In this paper we introduced two alternative formulations of the theory of evidence
by proving that both pl.f.s and comm.f.s share with belief functions the combi-
natorial structure of sum function, and computing their Moebius inverses which



we called basic plausibility and commonality assignments. From a combinatorial
point of view, b.f.s, pl.f.s and comm.f.s form a hierarchy of sum functions whose
Moebius inverse meets both normalization and positivity axiom (b.p.a.), only the
normalization constraint (b.pl.a.), and none of them (b.comm.a.) respectively.
The related spaces possess a similar convex geometry. Their congruence is the
geometric reflection of the equivalence of those alternative formulations, which
can be successfully applied to problems like the probabilistic approximation of
a belief function.
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