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Abstract

In this paper we extend our geomet-
ric approach to the theory of evi-
dence in order to include other im-
portant classes of finite fuzzy mea-
sures. In particular we describe
the geometric counterparts of pos-
sibility measures or fuzzy sets, rep-
resented as consonant belief func-
tions. The correspondence between
chains of subsets and convex sets of
consonant functions is studied and
its properties analyzed, eventually
yielding an elegant representation of
the region of consonant belief func-
tions in terms of the notion of sim-
plicial complex.
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sures, consonant belief functions,
simplicial complex.

1 Introduction

Uncertainty measures are assuming a mayor
role in fields like artificial intelligence, where
problems involving formalized reasoning or
machine learning are common. The theory of
evidence (ToE) [13] is one the most popular
approaches, being quite a natural extension of
the classical Bayesian formalism. In the ToE
probabilities are replaced by belief functions

(b.f.), which assign values between 0 and 1
to subsets of the sample space instead of sin-
gle elements. Bayes’ rule is also replaced by

a more general operation called Dempster’s

sum [4] which rules the combination of two
or more belief functions. Possibility measures

can also be seen as peculiar b.f.s, namely the
so called consonant belief functions. As it is
been already noticed, this implies a connec-
tion between fuzzy theory and theory of evi-
dence.

In this paper we propose a geometric picture
of the connections between those varieties of
fuzzy measures based on the geometric ap-
proach to the theory of evidence developed
in the last two years. In this framework,
belief functions are represented by points of
a convex space called belief space [3]. We
show that consonant b.f.s are in correspon-
dence with chains of subsets of their domain,
and are hence located in a collection of con-
nected regions of the belief space assuming
the form of a simplicial complex. We also
discuss a possible interpretation of these re-
sults, in particular the existence of a duality
between probabilities and possibilities due to
their close relation to the L1 and L∞ norms
respectively.

1.1 Previous work

The geometric approach to the theory of ev-
idence and generalized probabilities is due to
the author, but a close reference is perhaps
a recent paper of Ha and Haddawy [9] where
they exploit methods of convex geometry to
represent probability intervals. P. Black’s in-
teresting results on the geometry of belief
functions and other monotone capacities can
instead be found in [5], where he uses shapes



of geometric loci to give a direct visualization
of distinct classes of monotone capacities.

Many authors, like Yager [15] and Romer [12]
among the others, have on the other side stud-
ied the connection between fuzzy numbers
and Dempster-Shafer theory. For instance,
Klir et al. published an excellent discussion
[11] on the relations among fuzzy and belief
measures and possibility theory. The material
exposed in Section 4 is largely abstracted from
this paper. S. Heilpern [10] also presented
the theoretical background of fuzzy numbers
connected with the possibility and Dempster-
Shafer theories, describing some types of rep-
resentation of fuzzy numbers and studying the
notions of distance and order between fuzzy
numbers based on these representations. Caro
and Nadjar [1], instead, suggested a gener-
alization of the Dempster-Shafer theory to a
fuzzy valued measure.

The points of contact between evidential for-
malism (in the transferable belief model im-
plementation) and possibility theory has been
briefly investigated by Ph. Smets in [14],
while Dubois and Prade [7] has worked on the
consonant approximation of belief functions.

2 The theory of evidence

Following Shafer [13] we call the finite set of
possible outcomes of a decision problem frame

of discernment.

Definition 1. A basic probability assignment
(b.p.a.) over a frame Θ is a function m :
2Θ → [0, 1] such that

m(∅) = 0,
∑

A⊂Θ

m(A) = 1, m(A) ≥ 0 ∀A.

Subsets of Θ associated with non-zero values
of m are called focal elements and their union
core.

Definition 2. The belief function s : 2Θ →
[0, 1] associated with the basic probability as-

signment m is defined as:

s(A) =
∑

B⊂A

m(B).

Conversely, the basic probability assignment
m associated with a given belief function s

can be uniquely recovered by means of the
Moebius inversion formula

m(A) =
∑

B⊂A

(−1)|A−B|s(B) (1)

so that there is a 1-1 correspondence between
the two set functions m ↔ s.

An alternative mathematical representation
of the evidence encoded by belief function s

is the upper probability function P ∗
s : 2Θ →

[0, 1],

P ∗
s (A)

.
= 1 − s(Ac) = 1 −

∑

B⊂Ac

m(B) (2)

whose value P ∗
s (A) expresses the plausibility

of a proposition A or, in other words, the
amount of evidence not against A. Again, P ∗

s

convey the same information of s, and can be
expressed as

P ∗
s (A) =

∑

B∩A6=∅

m(B) ≥ s(A).

In the simplest situation the evidence points
to a single non-empty subset A ⊂ Θ.

Definition 3. A belief function s : 2Θ →
[0, 1] is called simple support function focused

on A if its b.p.a. is given by m(A) = σ,

m(Θ) = 1 − σ and m(B) = 0 for every other

B, where 0 ≤ σ ≤ 1.

However, belief functions can support more
than one proposition at a time. In particu-
lar, in the theory of evidence a probability
function is simply a peculiar belief function
which satisfies the additivity rule for disjoint
sets (Bayesian b.f.). It can be proved that s

is Bayesian iff

m(A) = 0, |A| > 1.

At the opposite of Bayesian functions stand
the so-called consonant belief functions.

Definition 4. A belief function is said to be

consonant if its focal elements are nested.

Proposition 1 [13] illustrates some of their
properties.



Proposition 1. If s is a belief function with

upper probability function P ∗, then the follow-

ing conditions are equivalent:

1. s is consonant;

2. s(A ∩ B) = min(s(A), s(B)) for every

A,B ⊂ Θ;

3. P ∗
s (A∪B) = max(P ∗

s (A), P ∗
s (B)) for ev-

ery A,B ⊂ Θ;

4. P ∗
s (A) = maxθ∈A P ∗

s ({θ}) for all non-

empty A ⊂ Θ.

3 Belief space

Motivated by the search for an adequate prob-
abilistic approximation of belief functions, in
some previous works of ours we introduced the
notion of belief space [3], as the space of all
the belief functions we can define on a given
domain.

Consider a frame of discernment Θ and in-
troduce in the Euclidean space R

|2Θ|−1 an or-
thonormal reference frame {XA}A⊂Θ in which
each coordinate function xA measures the be-
lief value associated with the subset A of Θ.

Definition 5. The belief space associated

with Θ is the set of points S of R
|2Θ|−1 corre-

sponding to a belief function.

It is not difficult to prove by means of the
positivity axiom of belief functions (see [3] for
the details) that S is convex. After denoting
with PA the unique belief function assigning
all the mass to a single subset A of Θ,

ms(A) = 1, ms(B) = 0 ∀ B 6= A

we can give an exact expression for the belief
space. Here ms is the b.p.a. associated with
s. It can be proved that (see [3] again), calling
Es the list of focal elements of s,

Theorem 1. The set of all the belief func-

tions with focal elements in a given collection

F is closed and convex in S:

{s : Es ⊂ F} = Cl({PA : A ∈ F}).

The simplicial form of the belief space is then
just a trivial consequence of Theorem 1.

Corollary 1. The belief space S coincides

with the convex closure of all the basic belief

functions PA,

S = Cl(PA, A ⊂ Θ, A 6= ∅). (3)

Notice that the vectors {PA, A ⊂ Θ} are lin-

early independent [2] so that the dimension of
S is 2|Θ| − 2. Furthermore, any belief func-
tion s ∈ S can be written as a convex sum as
follows:

s =
∑

A⊂Θ, A6=∅

ms(A) · PA. (4)

Figure 1 illustrates the concept.
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Figure 1: simplicial structure of the belief
space. Its vertices are all the basic belief func-
tions PA. The probabilistic subspace is a sub-
set Cl(P{θi}, i = 1, .., |Θ|) of its border.

Clearly, since a probability is a belief function
assigning non zero masses to singletons only,
Theorem 1 yields the following

Corollary 2. The set P of all the Bayesian

belief functions is a subset of the border of S,

precisely the simplex determined by all the ba-

sis functions associated with singletons:

P = Cl(P{θi}, i = 1, ..., |Θ|).

3.1 Binary frame

As an example let us consider a frame of dis-
cernment containing only two elements, Θ =
{x, y}. The non-empty subsets of Θ are Θ it-
self, {x} and {y}: hence the belief space will
be the 2-dimensional simplex Cl(PΘ, Px, Py)
(2|Θ| − 2 = 2). Being s(Θ) = 1 for each belief



function, the Θ-coordinate can be neglected
and we can write

PΘ = (0, 0), Px = (1, 0), Py = (0, 1).

The belief space can then be represented as a
triangle on a plane (Figure 2).
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Figure 2: geometry of the binary belief space.

P is in this case the diagonal line segment
Cl(Px, Py). Each belief function s ∈ S has
coordinates (s(x), s(y)) = (ms(x),ms(y)).

4 Fuzzy measures

4.1 Belief functions as fuzzy measures

Evidential reasoning and related theories are
often confused with fuzzy theory. In fact,
fuzzy measures are a generalization of belief
measures.

Definition 6. Given a frame Θ and a non-

empty family F of subsets of Θ, a fuzzy mea-
sure µ on 〈Θ,F〉 is a function

µ : F → [0, 1]

satisfying the following conditions:

1. µ(∅) = 0;

2. if A ⊆ B then µ(A) ≤ µ(B), for every

A,B ∈ F ;

3. for any increasing sequence A1 ⊆ A2 ⊆
· · · of subsets in F ,

if

∞
⋃

i=1

Ai ∈ F , then lim
i→∞

µ(Ai) = µ(

∞
⋃

i=1

Ai)

(continuity from below);

4. for any decreasing sequence A1 ⊇ A2 ⊇
· · · of subsets in F ,

if
⋂∞

i=1
Ai ∈ F and µ(A1) < ∞,

then limi→∞ µ(Ai) = µ(
⋂∞

i=1
Ai)

(continuity from above).

It is easy to see from the above definition that

Proposition 2. Belief measures are fuzzy

measures.

4.2 Possibilities and fuzzy sets

Besides the evidential reasoning, another im-
portant uncertainty theory, called possibility

theory [6] is based on a special fuzzy measure
called possibility measure.

Definition 7. A possibility measure on a do-

main Θ is a function

Pos : 2Θ → [0, 1]

such that Pos(∅) = 0, Pos(Θ) = 1 and

Pos(
⋃

i

Ai) = sup
i

Pos(Ai)

for any family {Ai|Ai ∈ 2Θ, i ∈ I} where I is

an arbitrary set index.

Any possibility measure is uniquely character-
ized by a membership function

π : Θ → [0, 1]
x 7→ π(x)

.
= Pos({x})

via the formula Pos(A) = supx∈A π(x).

It just needs to look at condition 4 of Propo-
sition 1 to realize that, for consonant belief
functions, the restriction of the plausibility
function to singletons P ∗

s ({x}) plays the role
of the membership function π(x) for a possi-
bility measure.
In other words,

Proposition 3. The upper probability func-

tion P ∗
s associated with a belief function s on

a domain Θ is a possibility measure iff s is a

consonant belief function.

Hence possibility theory is embedded into the
ToE, where possibility measures are repre-
sented by consonant belief functions.



5 Consonant subspace

The geometric interpretation of belief func-
tions puts the results of Section 4 in a differ-
ent light. Using the convex geometry of the
belief space we can pose the problem of find-
ing the region of S whose points correspond
to consonant belief functions (and therefore
to fuzzy sets, Section 4.2).

5.1 Chains of subsets as consonant

belief functions

The most natural thing to do is to observe
that, where generic belief functions do not
undergo to restrictions on their list of focal
elements, consonant belief functions are char-
acterized by the fact that their focal elements
can be rearranged into an ordered list.

The power set 2Θ of a frame is a partially

ordered set with respect to the set-theoretic
inclusion. In other words, the relation ⊂
possess three properties: reflexivity (A ⊂ A

∀A ∈ 2Θ), antisymmetry (A ⊂ B and B ⊂ A

implies A = B), and transitivity (A ⊂ B and
B ⊂ C implies A ⊂ C). A chain of a poset is
a collection of pairwise comparable elements
(totally ordered set).
The possible lists of focal elements associated
with consonant belief functions then corre-
spond to all the possible chains of subsets

A1 ⊂ ... ⊂ Am

in the partially ordered set (2Θ,⊂).

Now, Theorem 1 implies that all the b.f.s
whose focal elements belong to a chain X =
{A1, ..., Am} is Cl(PA1

, ..., PAm ). No matter
what the basic probability assignment is, all
the s ∈ Cl(PA1

, ..., PAm ) are consonant belief
functions.

Let us denote with n
.
= |Θ| the cardinality

of the frame Θ. Clearly, since each chain in
(2Θ,⊂) is a subset of a maximal chain (a chain
including subsets of any size from 1 to n),
the region of consonant belief functions turns
out to be the union of a collection of convex
components, each associated with a maximal

chain A:

C =
⋃

A=A1⊂...⊂An

Cl(PA1
, ..., PAn ).

The number of convex components of C is then
the number of maximal chains in (2Θ,⊂), i.e.

n
∏

k=1

(

k

1

)

= n!

since given a size k set we can build a new
set containing it by just choosing one of the
remaining elements. Since the length of a
maximal chain is again the cardinality of Θ,
the dimension of these convex components is
dimCl(PA1

, ..., PAn) = n − 1.

Each basic belief function PB obviously be-
longs to several distinct components. In par-
ticular, if |B| = k the total number of maxi-
mal chains containing B is

(n − k)!k! (5)

since in the power set of B the number of
maximal chains is k!, while to get a chain from
B to Θ we just have to add an element of
Bc (whose size is n − k) at each step. (5) is
also the number of convex components of C
containing PB .

In particular, each vertex P{x} of the proba-
bilistic subspace P (for which |{x}| = k = 1)
belongs to a sheaf of (n − 1)! convex compo-
nents of the consonant subspace. Clearly the
maximum number of simplices is n!, obtained
for k = n (the vacuous belief function PΘ).

An obvious remark is that C is connected,
for each convex component is obviously con-
nected, and each pair of convex components
of the consonant subspace has at least PΘ as
intersection.

5.2 Ternary case

Let us consider, as an example, the case of a
frame of size 3: Θ = {x, y, z}. The maximal
chains are then

{x} ⊂ {x, z} ⊂ Θ
{x} ⊂ {x, y} ⊂ Θ

{y} ⊂ {x, y} ⊂ Θ
{y} ⊂ {y, z} ⊂ Θ

{z} ⊂ {y, z} ⊂ Θ
{z} ⊂ {x, z} ⊂ Θ



Each singleton is then associated with 2
chains, and the total number of convex com-
ponents, whose dimension is |Θ| − 1 = 2,

Cl(P{x}, P{x,z}, PΘ)

Cl(P{x}, P{x,y}, PΘ)

Cl(P{y}, P{x,y}, PΘ)

Cl(P{y}, P{y,z}, PΘ)

Cl(P{z}, P{y,z}, PΘ)

Cl(P{z}, P{x,z}, PΘ)

is 3! = 6.

The reader can realize how each 2-
dimensional convex component (for instance
Cl(P{x}, P{x,z}, PΘ)) has an intersection of
dimension |Θ| − 2 = 1 (Cl(P{x,z}, PΘ)) with a
single other component (Cl(P{z}, P{x,z}, PΘ))
associated with a different element of Θ.

The geometry of the ternary frame can
then be represented as in Figure 3, where
the belief space is 6-dimensional S3 =
Cl(P{x}, P{y}, P{z}, P{x,y}, P{x,z}, P{y,z}, PΘ),
its probabilistic subspace is a 2-dimensional
simplex P3 = Cl(P{x}, P{y}, P{z}), and the
consonant subspace C3 is given by the union
of the connected components listed above.

5.3 Consonant subspace as simplicial

complex

These properties of C can be summarized by
means of another concept of convex geometry,
slightly more general than that of simplex [8].

Definition 8. An n-dimensional simplex is

the convex closure of n + 1 points of the Eu-

clidean space, σ = [α0, ..., αn].

The faces of an n-dimensional simplex are all
the possible simplices generated by a subset of
its vertices, i.e. [αj1 , ..., αjk

] with {j1, ..., jk} ⊂
{1, ..., n}. The n−1 dimensional faces are ob-
tained by simply eliminating one vertex. The
i-th face of σ = [α0, ..., αn] is denoted by

σn−1

i = [α0, ..., α̂i, ..., αn].

Lower dimensional faces are obtained by eras-
ing an arbitrary number of vertices.

Definition 9. The oriented boundary of the

simplex σn = [α0, ..., αn] is a formal linear

P

QP
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yP

zP},{ zxP

},{ yxP

},{ zyP

Figure 3: pictorial representation of the sim-
plicial complex of the consonant belief func-
tions for a ternary frame Θ3. The complex is
composed by n! = 3! = 6 convex components
of dimension n− 1 = 2, each vertex of P3 be-
ing shared by (n − 1)! = 2! = 2 of them. The
region is connected, and is part of the border
∂S3 of the belief space S3.

combination of its faces of the form

∂σn =
n

∑

i=0

(−1)iσn−1

i .

Figure 4: constraints on the intersection of
simplices in a complex.

Definition 10. A simplicial complex is a col-

lection Σ of simplices of arbitrary dimension

possessing the following properties:

1. if a simplex belongs to Σ, then all its faces

of any dimension belong to Σ;



2. the intersection of two d-dimensional

simplices is a face of both the intersecting

simplices.

Let us consider for instance two triangles on
the plane (2-dimensional simplices). Roughly
speaking, the second condition says that the
intersection of those triangles cannot contain
points of their interiors (Figure 4 left). It can-
not also be any subset of their borders (mid-
dle), but has to be a face (right, in this case
a single vertex). Note that if two simplices
intersect in a face τ , they obviously intersect
in every face of τ .

Theorem 2. C is a simplicial complex in-

cluded in the belief space S.

Proof. Property 1 of Definition 10 is trivially
satisfied, since if a simplex Cl(PA1

, ..., PAn )
correspond to a chain A1 ⊂ ... ⊂ An in the
poset (2Θ,⊂), clearly any face of this simplex
correspond to a subchain in 2Θ, and then to
a simplex of consonant belief functions.

About property 2, let us consider the inter-
section of two convex components

Cl(PA1
, ..., PAn) ∩ Cl(PB1

, ..., PBn )

associated with the pair of maximal chains
A = A1, ..., An and B = B1, ..., Bn respec-
tively (where An = Bn = Θ). Being the
vectors {PA} linearly independent, no linear
combination of PB ’s can yield an element of
span(PA1

, ..., PAn ), unless some of those vec-
tors coincide. In this case the desired inter-
section is

Cl(PCi1
, ..., PCik

)

where

C = {Cij , j = 1, ..., k} = A∩ B (6)

with k < n and Cik = Θ. But then C is a
subchain of both A and B, so that (6) is a face
of both Cl(PA1

, ..., PAn ) and Cl(PB1
, ..., PBn ).

As Figure 3 shows, P and the components of C
have the same dimension, and are both parts
of the boundary ∂S of the belief space.

6 Discussion

The geometric description of consonant be-
lief functions in the belief space clearly pic-
tures a sort of duality between probability and
possibility measures, represented by the di-
chotomy simplex - simplicial complex. It is
not hard to show that this is due to the con-
nection of those measures with the norms L1

and L∞ respectively, i.e. P (A) =
∑

x∈A P (x),
Pos(A) = maxx∈A Pos(x).

The well-known problem of finding a conso-
nant approximation of a belief function faced
by Dubois and Prade in [7] can then be ap-
proached from a geometric point of view too.
In fact, we have recently proposed an approx-
imation criterion based on Dempster’s rule,
in which the solution minimizes the integral
difference between all the combinations of the
original b.f. s and its approximation ŝ with
any other belief function t [16]

ŝ = arg min
s′∈C

∫

t∈S
dist(s ⊕ t, s′ ⊕ t)dt (7)

where t ∈ S is an arbitrary belief function
on the same frame, dist is a distance function
in the Euclidean space (being the belief space
a subset of R

N ), and C is the class of belief
functions the approximation belongs to.
For probabilistic approximations this yields a
unique solution no matter what is the choice
of the norm, namely the relative plausibility
function P̃ ∗

s

P̃ ∗
s (A) =

∑

θ∈A

P ∗
s ({θ})

∑

θ∈Θ

P ∗
s ({θ})

=
‖vA‖1

‖vΘ‖1

where vA is the vector [P ∗
s (θ1), ..., P

∗
s (θ|A|)] of

the plausibilities of the elements of A.

We are currently aiming at a general proof
for the probabilistic case, based on the rep-

resentation property: the relative plausibility
of singletons P̃ ∗

s is a perfect representation of
s in the probability subspace through Demp-
ster’s rule, i.e. s ⊕ t = P̃ ∗

s ⊕ t, ∀t ∈ P. The
convex geometry of Dempster’s rule [2] can
then lead us to a geometric solution of the
approximation problem (7).



The duality principle would imply to choose
as possibilistic approximation of a belief func-
tion s the unique consonant belief function c

with plausibility

P ∗
c (A) =

maxθ∈A P ∗
s ({θ})

maxθ P ∗
s ({θ})

=
‖vA‖∞
‖vΘ‖∞

. (8)

However, the behavior of (8) in the Dempster-
based approximation problem and its charac-
terization in terms of focal elements are still
open problems, as the exciting option of ex-
ploiting results of the theory of chain and sim-
plicial complexes to widen our knowledge of
fuzzy measures.

References

[1] L. Caro and A.B. Nadjar (1999). Gen-
eralization of the Dempster-Shafer the-
ory: a fuzzy-valued measure. In IEEE

Transactions on Fuzzy Systems, volume
7, pages 255–270, 1999.

[2] F. Cuzzolin (2004). Geometry of Demp-
ster’s rule of combination. To appear in
the IEEE Transactions on Systems, Man

and Cybernetics B.

[3] F. Cuzzolin and R. Frezza (2001). Ge-
ometric analysis of belief space and
conditional subspaces. In Proceedings of

ISIPTA2001, Cornell University, Ithaca,
26-29 June 2001.

[4] A.P. Dempster (1967). Upper and lower
probability inferences based on a sample
from a finite univariate population. In
Biometrika, volume 54, pages 515–528,
1967.

[5] P. Black (1997). Geometric Structure of
Lower Probabilities. In Random Sets:

Theory and Applications, Goutsias, Mal-
her and Nguyen editors. Springer, pages
361-383, 1997.

[6] D. Dubois and H. Prade (1988). Possi-
bility theory. Plenum Press, New York,
1988.

[7] D. Dubois and H. Prade (1990). Conso-
nant approximations of belief functions.

In International Journal of Approximate

Reasoning, volume 4, pages 419–449,
1990.

[8] B.A. Dubrovin, S.P. Novikov, and
A.T. Fomenko (1986). Sovremennaja ge-
ometrija. Metody i prilozenija. Nauka,
Moscow, 1986.

[9] V. Ha and P. Haddawy (1996). Theo-
retical foundations for abstraction-based
probabilistic planning. In Proceedings of

the 12th Conference on Uncertainty in

Artificial Intelligence, pages 291–298,
August 1996.

[10] S. Heilpern (1997). Representation and
application of fuzzy numbers. In Fuzzy

Sets and Systems, volume 91, pages 259–
268, 1997).

[11] G.J. Klir, W. Zhenyuan, and D. Har-
manec (1997). Constructing fuzzy mea-
sures in expert systems. In Fuzzy Sets

and Systems, volume 92, pages 251–264,
1997.

[12] C. Roemer and A. Kandel (1995). Ap-
plicability analysis of fuzzy inference by
means of generalized Dempster-Shafer
theory. In IEEE Transactions on Fuzzy

Systems, volume 3, issue 4, pages 448–
453, November 1995.

[13] G. Shafer (1976). A mathematical theory
of evidence. Princeton University Press,
1976.

[14] Ph. Smets (1990). The transferable belief
model and possibility theory. In Proceed-

ings of NAFIPS-90, pages 215–218, 1990.

[15] R.R. Yager (1999). Class of fuzzy mea-
sures generated from a Dempster-Shafer
belief structure. In International Journal

of Intelligent Systems, volume 14, pages
1239–1247, 1999.

[16] F. Cuzzolin (2004). On the properties of
relative plausibilities. Submitted to the
European Conference on Artificial Intel-

ligence, Valencia, Spain, August 22-27
2004.


