
On the relative belief transform

Fabio Cuzzolin a

aDepartment of Computing and Communication Technologies
Oxford Brookes University

Wheatley campus, Oxford OX33 1HX, United Kingdom

Abstract

In this paper we discuss the semantics and properties of the relative belief trans-
form, a probability transformation of belief functions closely related to the classical
plausibility transform. We discuss its rationale in both the probability-bound and
Shafer’s interpretations of belief functions. Even though the resulting probability (as
it is the case for the plausibility transform) is not consistent with the original belief
function, an interesting rationale in terms of optimal strategies in a non-cooperative
game can be given in the probability-bound interpretation to both relative belief
and plausibility of singletons. On the other hand, we prove that relative belief com-
mutes with Dempster’s orthogonal sum, meets a number of properties which are
the duals of those met by the relative plausibility of singletons, and commutes with
convex closure in a similar way to Dempster’s rule. This supports the argument
that relative plausibility and belief transform are indeed naturally associated with
the D-S framework, and highlights a classification of probability transformations in
two families, according to the operator they relate to. Finally, we point out that
relative belief is only a member of a class of “relative mass” mappings, which can
be interpreted as low-cost proxies for both plausibility and pignistic transforms.

Key words: Theory of evidence, probability transformation, relative plausibility
and belief of singletons, duality, Dempster’s combination, commutativity.

1 Introduction

The theory of evidence [38] extends classical probability theory through the
notion of belief function, a mathematical entity which independently assigns
probability values to sets of possibilities rather than single events. A belief
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function b : 2Θ → [0, 1] on a finite set or frame Θ has the form b(A) =∑
B⊆A mb(B), where the function mb : 2Θ → [0, 1] (called basic probability

assignment or basic belief assignment b.b.a.) is both non-negative mb(A) ≥ 0
∀A ⊆ Θ and normalized

∑
A⊆Θ mb(A) = 1. Events A associated with non-zero

basic probabilities mb(A) 6= 0 are called focal elements. A basic probability
assignment mb can be uniquely recovered from a belief function b by Moebius
transform: mb(A) =

∑
B⊆A(−1)|A−B|b(B). Special belief functions assigning

non-zero masses to singletons only (mb(A) = 0 whenever |A| > 1, A ⊆ Θ)
are called Bayesian belief functions, and are in 1-1 correspondence with prob-
ability distributions on Θ. Different operators have been proposed for the
combination of two or more belief functions, starting from the orthogonal sum
originally formulated by A. Dempster [19,18].
Belief functions possess a number of alternative semantics in terms of multi-
valued mappings [40], random sets [35,29], inner measures [36,26], transferable
beliefs [45] or hints [32]. One such interpretation is based on the fact that a
belief function corresponds to a set of upper and lower bounds to the values
of probability measures on Θ, which in turn determine a convex set P [b] of
such probabilities (often called consistent with b):

P [b]
.
=

{
p ∈ P : b(A) ≤ p(A) ≤ plb(A) ∀A ⊆ Θ

}
, (1)

where the plausibility function plb : 2Θ → [0, 1], plb(A) = 1 − b(Ac) =∑
B∩A6=∅ mb(B) carries the same evidence as b. Such interpretation has been

criticized as incompatible with Dempster’s rule of combination [52].
On the other hand, in the original model in which belief functions are induced
by multi-valued mappings of probability distributions, Dempster’s condition-
ing can be judged inappropriate from a Bayesian point of view. In order to
deal with such criticism, in his “Transferable Belief Model” (TBM) [42,45]
Smets abandons all notions of multivalued mapping to define belief directly
in terms of basis belief assignments (“credal” level).

1.1 Probability transformation of belief functions

The relation between belief and probability, in particular, has been an im-
portant subject of study in the theory of evidence. Given a frame of dis-
cernment Θ, let us denote by B the set of all belief functions on Θ, and
by P the set of all probability distributions on Θ. According to [17], we
call a probability transform of belief functions an operator pt : B → P ,
b 7→ pt[b] mapping belief measures onto probability distributions, such that
b(x) ≤ pt[b](x) ≤ plb(x) = 1 − b({x}c). Note that such definition requires
the probability which results from the transform to be compatible with the
upper and lower bounds the original belief function b enforces on the single-
tons only, and not on all the focal sets as in Equation (1). This is a minimal,
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sensible constraint which does not require probability transforms to adhere to
the upper-lower probability semantic of belief functions.
A number of papers have been published on the issue of probability transform
[53,33,1,55,22,23,28]. Many of these proposals seek efficient implementations
of the rule of combination. Tessem [49], for instance, incorporates only the
highest-valued focal elements in his mklx approximation. A similar approach
inspires the summarization technique formulated by Lowrance et al. [34].
A different, decision based approach to probability transformation is at the
foundation of the TBM, where decisions are made via the pignistic probability

BetP [b](x) =
∑

A⊇{x}

mb(A)

|A| , (2)

generated by what he calls the pignistic transform: BetP : B → P , b 7→
BetP [b]. Initially justified by the Principle of Insufficient Reason, the pignis-
tic probability is the result of a redistribution process in which the mass of
each focal element A is re-assigned to all its elements x ∈ A on an equal ba-
sis, and is perfectly compatible with the upper-lower probability semantics of
belief functions, as it is the center of mass of the polytope (1) of consistent
probabilities [4].
Other proposals have been recently brought forward by Dezert et al. [24],
Burger [3], Sudano [48] and others, based on redistribution processes simi-
lar to that of the pignistic transform. New Bayesian approximations of belief
functions, such as the orthogonal projection of a belief function b onto the
probability simplex:

π[b](x) =
∑

A⊇{x}
mb(A)

(
1 + |Ac|21−|A|

n

)
+

∑

A6⊃{x}
mb(A)

(
1− |A|21−|A|

n

)
(3)

have been derived from purely geometric considerations [9] in the context of
the geometric approach to the theory of evidence [11].

1.2 Relative plausibility and belief transforms

Originally developed by Voorbraak [51] as a probabilistic approximation in-
tended to limit the computational cost of operating with belief functions in
the Dempster-Shafer framework, the plausibility transform [5] has later been
supported by Cobb and Shenoy in virtue of its commutativity properties with
respect to Dempster’s sum. Even though initially defined in terms of common-
ality values, the plausibility transform p̃l : B → P , b 7→ p̃l[b] maps each belief
function b onto the probability distribution p̃l[b] = p̃lb obtained by normalizing
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the plausibility values plb(x) 1 of the element of Θ:

p̃lb(x) =
plb(x)∑

y∈Θ plb(y)
. (4)

We call the output p̃lb (4) of the plausibility transform relative plausibility of
singletons. Voorbraak proved that the latter is a perfect representative of b
when combined with other probabilities p ∈ P through Dempster’s rule ⊕:

p̃lb ⊕ p = b⊕ p ∀p ∈ P . (5)

Dually, a relative belief transform b̃ : B → P , b 7→ b̃[b] mapping each belief
function to the corresponding relative belief of singletons b̃[b] = b̃ [10,13,27,17]

b̃(x) =
b(x)∑

y∈Θ b(y)
(6)

can be defined. Unlike the relative plausibility of singletons, however, b̃[b] exists
iff b assigns some mass to singleton focal sets:

∑

x∈Θ

mb(x) 6= 0. (7)

The notion of relative belief transform (under the name of “normalized be-
lief of singletons”) has first been proposed by Daniel [17]. Some preliminary
analyses of the relative belief transform and its close relationship with the
(relative) plausibility transform have been presented in [10,13].
Whatever the rationale for proposing a probability transformation of belief
functions (decision making, as in the pignistic transform, or computational
burden in many other cases), there are many ways of investigating its design:
geometrical properties, principle of insufficient reason, commutativity proper-
ties, etcetera. A detailed discussion of the geometrical properties of b̃ and p̃l,
for instance, has been given in [14]. Here we focus on commutativity proper-
ties, making a distinction between transforms which commute with respect to
affine combination of belief functions (pignistic and orthogonal probabilities),
and those which commute with respect to Dempster’s rule (and therefore are
consistent with the original Dempster-Shafer framework): relative plausibility
and belief transform. This outlines a classification of probability transforma-
tions into two classes, according to the operator they commute with.

1 With a harmless abuse of notation we denote the values of mass, belief and
plausibility functions on a singleton x by mb(x), b(x) and plb(x) rather than mb({x}),
b({x}) and plb({x}).
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1.3 Paper contribution and outline

As belief functions have different, rather conflicting interpretations, in Sec-
tion 2 we discuss the semantics of relative belief and plausibility in both
the probability-bound and Shafer’s interpretations of the theory. Within the
probability-bound interpretation (Section 2.1), as neither transforms are as-
sociated with a valid redistribution of the mass of the focal elements to the
singletons, it is easy to prove that they are not consistent with the original
belief function. However, an interesting betting semantic for such transforms
in this interpretation can be provided in an adversarial game theory scenario
[50] in which an opponent is free to pick any probability function in the set
determined by a belief function, and the decision maker’s goal is to maximize
their minimal reward (or minimize their maximal loss). In Shafer’s formula-
tion of the theory of evidence as an evidence combination process, arguments
similar to those formulated for the plausibility transform can be resorted to
in the case of the relative belief transform (Section 2.2).
Indeed, as we argue here, the relative plausibility and belief transforms are
closely related probability transformations (Section 3). Not only the latter can
be seen as the relative plausibility of singletons of the associated plausibility
function (Section 3.2), but both transforms meet a number of dual properties
with respect to Dempster’s rule of combination (Section 3.3). In particular,
while p̃lb commutes with Dempster’s sum of belief functions, b̃ commutes with
the orthogonal sum of plausibility functions. Similarly, while p̃lb perfectly rep-
resents the belief function b when combined with any probability distribution
(5), b̃ perfectly represents the associated plausibility function plb when com-
bined with a probability through the natural extension of Dempster’s sum
(Section 3.4). Such a duality is illustrated in the following table:

b ↔ plb

p̃lb ↔ b̃

b⊕ p = p̃lb ⊕ p ∀p ↔ plb ⊕ p = b̃⊕ p ∀p
p̃lb[b1 ⊕ b2] = p̃lb[b1]⊕ p̃lb[b2] ↔ b̃[plb1 ⊕ plb2 ] = b̃[plb1 ]⊕ b̃[plb2 ].

This outlines the classification of probability transformations into two major
classes: those commuting with affine combination versus those commuting with
Dempster’s rule (Section 3.5). The behavior of the plausibility transform w.r.t.
affine combination, closely mimicking that of Dempster’s rule itself, confirms
that this second family is indeed more consistent with the original Dempster-
Shafer framework.
The symmetry/duality between (relative) plausibility and belief is broken,
however, as the existence of the relative belief of singletons is subject to a
strong condition (7), stressing the issue of its applicability (Section 4). Even
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though this situation is “singular” (in the sense that it excludes most belief
and probability measures, Section 4.1), in practice the situation in which the
mass of all singletons is nil is common. In Section 4.2, however, we point
out that relative belief is only a member of a class of relative mass trans-
formations, which can be interpreted as low-cost proxies for both plausibility
and pignistic transforms (4.3). We discuss their applicability as approximate
transformations in two significant scenarios.

2 Rationale of relative belief and plausibility of singletons in two
interpretations of the theory of evidence

The original semantic of belief functions derives from Dempster’s analysis of
the effect of multi-valued mappings Γ : Ω → 2Θ, x ∈ Ω 7→ Γ(x) ⊆ Θ on
evidence available in the form of a probability distribution on a “top” domain
Ω on a “bottom” decision set Θ. As such, belief values are probabilities of
events implying other events. In some of his papers [20], however, Dempster
himself claimed that the mass mb(A) associated with a non-singleton event
A ⊆ Θ could be understood as a “floating probability mass” which could not
be attached to any particular singleton event x ∈ A because of the lack of
precision of the (multi-valued) operator that quantifies our knowledge via the
mass function. This has originated a popular but controversial interpretation
of belief functions as coherent sets of probabilities determined by sets of lower
and upper bounds to their probability values.
As Shafer admits, there is a sense in which a single belief function can indeed
be interpreted as a consistent system of probability bounds. However, the issue
with the probability-bound interpretation of belief functions becomes evident
when considering two or more belief functions addressing the same question
but representing conflicting items of evidence, i.e., when Dempster’s rule is
applied to aggregate evidence. In [38,39], Shafer disavowed any probability-
bound interpretation, a position later seconded by Dempster [21].
We will come back to this point in Section 2.2, in which we will link the
relative belief transform to Cobb and Shenoy’s arguments [5] in favor of the
plausibility transform as a link between Shafer’s theory of evidence (endowed
with Dempster’s rule) and Bayesian reasoning. To corroborate this argument,
in Section 2.1 we show that both plausibility and relative belief transforms
(unlike Smets’ pignistic transform) are not consistent with a probability-bound
interpretation of belief functions. Even in this scenario, however, a rationale
for such transformations can be given via a utility theoretical argument, as in
the case of the pignistic probability.
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2.1 A game theoretical semantic within the probability-bound interpretation

In their static, probability-bound interpretation, belief functions b : 2Θ → [0, 1]
determine each a convex set P [b] of “consistent” probability distributions (1).
It can be proven that a probability distribution on Θ is consistent with b in
the above way iff it is the result of a redistribution process, in which the mass
of each focal element is shared between its elements in an arbitrary proportion
[12]. One such probability is central in Smets’ Transferable Belief Model, in
which decisions are made at the pignistic level by applying the pignistic trans-
form to convert the available belief function into a probability distribution.
The nature of the mapping was originally based on the Principle of Insufficient
Reason (PIR) proposed by Bernoulli, Laplace, and Keynes, which states that
“if there is no known reason for predicating of our subject one rather than an-
other of several alternatives, then relatively to such knowledge the assertions
of each of these alternatives have an equal probability”.
A direct consequence of the PIR 2 in the probability-bound interpretation of
belief functions is that, when considering how to redistribute the mass of an
event A, it is wise to assume equiprobability amongst its singletons. This yields
exactly the pignistic transform (2).

It is easy to prove that relative belief and plausibility of singletons are not the
result of such a redistribution process, and therefore are not consistent with
the original belief function in the sense defined above. Indeed, the relative
plausibility of singletons (4) is the result of a process in which:

• for each singleton x ∈ Θ a redistribution process (there could be more than
one) is selected in which the mass of all the events containing it is reassigned
to x, yielding {plb(x), x ∈ Θ};

• however, as different redistribution processes are supposed to hold for differ-
ent singletons (many of which belong to the same higher-size focal elements),
this scenario is not compatible with the existence of a single redistribution
of mass to the singletons, as the mass of the same higher cardinality event
is assigned to different singletons;

• the obtained plausibility values plb(x), x ∈ Θ are nevertheless normalized
to yield a formally admissible probability distribution.

Similarly, for the relative belief of singletons (6):

• for each singleton x ∈ Θ a redistribution process is selected in which only
the mass of {x} itself is re-assigned to x, yielding {b(x) = mb(x), x ∈ Θ};

• once again this scenario does not correspond to a single valid redistribution

2 Later on, however, Smets [43] advocated that the PIR could not justify by itself
the uniqueness of the pignistic transform, and proposed a justification based on a
number of axioms.
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process, as the mass of all higher-size focal elements is not assigned to any
singletons;

• the obtained values b(x), x ∈ Θ are nevertheless normalized to produce a
valid probability.

The fact that both such probability transformations derive from assuming at
the same time a number of incompatible redistribution processes is reflected
by the fact that the resulting probability distributions are not guaranteed to
belong to the set of probabilities (1) consistent with b.

Theorem 1 The relative belief of singletons is not always consistent.

Proof. We just need a simple counterexample. Consider a belief function b :
2Θ → [0, 1] on Θ = {x1, x2, ..., xn}, kmb

.
=

∑
x∈Θ mb(x) the total mass it assigns

to singletons, with b.b.a. mb(xi) = kmb
/n for all i, mb({x1, x2}) = 1 − kmb

.
Then:

b({x1, x2}) = 2 · kmb

n
+ 1− kmb

= 1− kmb

(
n− 2

n

)
,

b̃(x1) = b̃(x2) =
1

n
⇒ b̃({x1, x2}) =

2

n
.

For b̃ to be consistent with b (Equation (1)) it is necessary that b̃({x1, x2}) ≥
b({x1, x2}), in other words:

2

n
≥ 1− kmb

n− 2

n
≡ kmb

≥ 1,

i.e., kmb
= 1. If kmb

< 1 (b is not a probability) its relative belief of singletons
is not consistent. 2

A similar counterexample can be found for p̃lb.

Theorem 2 The relative plausibility of singletons is not always consistent.

Proof. Let us pick for sake of simplicity a frame of discernment with just three
elements: Θ = {x1, x2, x3}, and the following b.b.a.:

mb({xi}c) =
k

3
∀i = 1, 2, 3, mb({x1, x2}c) = mb({x3}) = 1− k.

In this case, the plausibility of {x1, x2} is obviously: plb({x1, x2}) = 1 − (1 −
k) = k, while the plausibilities of the singletons are: plb(x1) = plb(x2) = 2/3k,
plb(x3) = 1−1/3k. Therefore

∑
x∈Θ plb(x) = 1+k and the relative plausibility

values are: p̃lb(x1) = p̃lb(x2) = 2/3k
1+k

, p̃lb(x3) = 1−1/3k
1+k

.

For p̃lb to be consistent with b we need:

p̃lb({x1, x2}) = p̃lb(x1) + p̃lb(x2) =
4

3
k

1

1 + k
≤ plb({x1, x2}) = k,
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which happens if and only if k ≥ 1/3. Therefore, for k < 1/3 p̃lb 6∈ P [b]. 2

As an additional example, consider a belief function on Θ = {x1, x2, ..., xn}
with two focal elements:

mb(x1) = 0.01, mb({x2, ..., xn}) = 0.99. (8)

This can be interpreted as the following real-world situation. A number of
people x2, ..., xn have no money of their own but they are all candidates to
inherit the wealth of a very rich relative. Person x1 is not, but has some little
money of their own. Note that it is not correct to interpret x2, ..., xn as assured,
joint owners of a certain wealth (say, shares of the same company), as (8) is
indeed consistent (in the probability-bound interpretation) with a distribution
which assigns probability 0.99 to a single person of the group x2, ..., xn.
The relative belief of singletons associated with (8) is the distribution with
b̃(x1) = 1, b̃(xi) = 0 for i = 2, ..., n. Clearly this is not a good representative of
the set of probabilities consistent with the above belief function, as it does not
contemplate at all the chance all the heirs x2, ..., xn have to gain a remarkable
amount of money. Indeed, according to Theorem 1, b̃ in this example is not at
all consistent with (8).

What b̃ and p̃lb do is to set respectively a lower and an upper bound to the
probability values for each element x ∈ Θ of the frame under the constraint
represented by the belief function b, as in Dempster’s original interpretation.
However, even though in the probability-bound interpretation the two trans-
forms do not appear as valid approximations of belief functions, an interest-
ing interpretation for them can be provided in a game/utility theory context
[50,46,30]. The argument we propose here recalls somehow the betting ratio-
nale for the pignistic transform in the TBM [54], where a MAP decision is
taken at the pignistic level as follows:

x∗ = arg max
x∈Θ

{
BetP [b] (x)

}
.

In expected utility theory [50], a decision maker can choose between a number
of “lotteries” (probability distributions) Li in order to maximize their expected
return or utility calculated as

E(Li) =
∑

x∈Θ

u(x) · pi(x),

where u is a utility function u : Θ → R+ which measures the relative satisfac-
tion (for us) of the different outcomes x ∈ Θ of the lottery, and pi(x) is the
probability of x under lottery Li.

Consider instead the following game theory scenario, inspired by Strat’s ex-
pected utility approach to decision making with belief functions [47,37].
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Fig. 1. The modified carnival wheel, in which part of the spinning wheel is cloaked.

In a country fair, people are asked to bet on one of the possible outcomes of
a spinning carnival wheel. Suppose the outcomes are {♣,♦,♥,♠}, and that
they each have the same utility (return) to the player. This is equivalent to
a lottery (probability distribution), in which each outcome has a probability
proportional to the area of the corresponding sectors on the wheel. However,
the fair manager decides to make the game more interesting by covering part of
the wheel. Players are still asked to bet on a single outcome, knowing that the
manager is allowed to rearrange the hidden sector of the wheel as he pleases
(see Figure 1). Clearly, this situation can be described as a belief function, in
particular one in which the fraction of area associated with the hidden sector
is assigned as mass to the whole decision space {♣,♦,♥,♠}. If additional
(partial) information is provided, for instance that ♦ cannot appear in the
hidden sector, different belief functions must be chosen instead.

Regardless the particular belief function b (set of probabilities) at hand, the
rule allowing the manager to pick an arbitrary distribution of outcomes in
the hidden section mathematically translates into allowing him/her to choose
any probability distribution p ∈ P [b] consistent with b in order to damage the
player. Supposing the aim of the player is to maximize their minimal chance
of winning the bet, which outcome (singleton) should they pick?
In the probability-bound interpretation, the belief value of each singleton x ∈
Θ measures the minimal support x can receive from a distribution of the family
P [b] associated with the belief function b:

b(x) = min
p∈P[b]

p(x).

Hence xmaximin
.
= arg maxx∈Θ b(x) is the outcome which maximizes such min-

imal support. In the example of Figure 1, as ♣ is the outcome which occupies
the largest share of the visible part of the wheel, the safest bet (the one which
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guarantees the maximal chance in the worst case) is indeed ♣. Formally, ♣ is
the singleton with the largest belief value. Now, if we normalize to compute
the relative belief of singletons this outcome is obviously conserved:

xmaximin = arg max
x∈Θ

b̃(x) = arg max
x∈Θ

min
p∈P[b]

p(x).

In conclusion, if the utility function is constant (i.e., if no element of Θ can
be preferred over the others), xmaximin (the peak(s) of the relative belief of
singletons) represents the best possible defensive strategy aimed at maximizing
the minimal utility of the possible outcomes.

Dually, plb(x) measures the maximal possible support to x by a distribution
consistent with b, so that

xminimax = arg min
x∈Θ

p̃lb(x) = arg min
x∈Θ

max
p∈P[b]

p(x)

is the outcome which minimizes the maximal possible support.
Suppose for sake of simplicity that the loss function l : Θ → R+ which mea-
sures the relative dissatisfaction of the outcomes is constant, and that in the
same game theory setup our opponent is (again) free to pick a consistent
probability distribution p ∈ P [b]. Then the element with minimal relative
plausibility is the best possible defensive strategy aimed at minimizing the
maximum possible loss.
Note that when the utility function is not constant the above minimax and
maximin problems naturally generalize as:

xmaximin = arg maxx∈Θ b̃(x)u(x), xminimax = arg minx∈Θ p̃lb(x)l(x).

While in classical utility theory the decision maker has to select the best
“lottery” (probability distribution) in order to maximize the expected utility,
here the “lottery” is chosen by his/her opponent (given the available partial
evidence), and the decision maker is left with betting on the safest strategy
(element of Θ). Relative belief and plausibility of singletons play a crucial
role in determining the safest betting strategy in an adversarial scenario in
which the decision maker has to minimize their maximal loss/maximize their
minimal return.

2.2 Semantics within Shafer’s interpretation

Shafer has strongly argued against a probability-bound interpretation of be-
lief functions. When these are not taken in isolation but as pieces of evidence
to combine, such an interpretation forces us to consider only groups of be-
lief functions whose degrees of belief, when interpreted as probability bounds,
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can be satisfied simultaneously (in other words, when their sets of consistent
probabilities have non-empty intersection). In Shafer’s (and Shenoy’s) view,
though, when belief functions are combined via Dempster’s rule this is irrele-
vant, even though consistent probabilities that simultaneously bound all the
belief functions being combined as well as the resulting belief function do exist
when no renormalization is required in their Dempster’s combination. Conse-
quently, citing Shafer, authors who support a probability-bound interpretation
of belief functions are uncomfortable with renormalization [56].
In this context, Cobb and Shenoy [5] have argued in favor of the plausibility
transform as a link between Shafer’s theory of evidence (endowed with Demp-
ster’s rule) and Bayesian reasoning. Besides some general arguments support-
ing probability transformations of belief functions in general, their points more
specifically about the plausibility transform can be summarized as follows:

• a probability transformation consistent with Dempster’s rule can improve
our understanding of the theory of evidence by providing probabilistic se-
mantics for belief functions, i.e., “meanings” of basic probability assign-
ments in the context of betting for hypotheses in the frame Θ;

• in opposition to some literature on belief functions suggesting that the the-
ory of evidence is more expressive than probability theory (since the prob-
ability model obtained by using the pignistic transformation leads to non-
intuitive results [2]), they show that by using the plausibility transformation
method the original belief function model and the corresponding probability
model yield the same qualitative results;

• a probability transformation consistent with Dempster’s rule allows to build
probabilistic models by converting/transforming belief function models ob-
tained by using the belief function semantics of distinct evidence [41].

Mathematically, they proved [7] that the plausibility transform commutes with
Dempster’s rule, and meets a number of additional properties which they claim
“allow an integration of Bayesian and D-S reasoning that takes advantage of
the efficiency in computation and decision-making provided by Bayesian cal-
culus while retaining the flexibility in modeling evidence that underlies D-S
reasoning”.
In this paper we prove that a similar set of (dual) properties hold for the rela-
tive belief transform, associating relative belief and relative plausibility trans-
forms in a family of probability transformations strongly related to Shafer’s
interpretation of the theory of evidence via Dempster’s rule.

3 Duality

Relative belief and plausibility of singletons are, as we show here, linked by a
form of duality, as b̃ can be interpreted as the relative plausibility of singletons
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of the plausibility function plb associated with b. Furthermore, b̃ and p̃lb share a
close relationship with Dempster’s evidence combination rule ⊕, as they meet
a set of dual properties with respect to ⊕. This suggests a classification of
all the probability transformations of belief functions in terms of the operator
they relate to.

3.1 Relative plausibility, Dempster’s rule, and pseudo belief functions

Definition 1 The orthogonal sum or Dempster’s sum of two belief functions
b1, b2 : 2Θ → [0, 1] is a new belief function b1 ⊕ b2 : 2Θ → [0, 1] with b.b.a.:

mb1⊕b2(A) =

∑
B∩C=A mb1(B) mb2(C)∑
B∩C 6=∅ mb1(B) mb2(C)

, (9)

where mbi
denotes the b.b.a. associated with bi.

We denote by k(b1, b2) the denominator of Equation (9).
Cobb and Shenoy [7] proved that the relative plausibility function p̃lb com-
mutes with Dempster’s rule, and meets a number of additional properties 3 .

Proposition 1 (1) If b = b1⊕· · ·⊕bm then p̃lb = p̃lb1⊕· · ·⊕p̃lbm
: Dempster’s

sum and relative plausibility commute.
(2) If mb is idempotent with respect to Dempster’s rule, i.e. mb ⊕mb = mb,

then p̃lb is idempotent with respect to Bayes’ rule.
(3) Let us define the limit of a belief function b as

b∞ .
= lim

n→∞ bn .
= lim

n→∞

(
b⊕ · · · ⊕ b

)
(n times); (10)

if ∃x ∈ Θ such that plb(x) > plb(y) for all y 6= x, y ∈ Θ, then p̃lb∞(x) = 1,
p̃lb∞(y) = 0 for all y 6= x.

(4) If ∃A ⊆ Θ (|A| = k) such that plb(x) = plb(y) for all x, y ∈ A and
plb(x) > plb(z) for all x ∈ A, z ∈ Ac, then p̃lb∞(x) = p̃lb∞(y) = 1/k for
all x, y ∈ A, while p̃lb∞(z) = 0 for all z ∈ Ac.

On his side, Voorbraak has shown [51] that:

Proposition 2 The relative plausibility of singletons p̃lb is a perfect repre-
sentative of b in the probability space when combined through Dempster’s rule:
b⊕ p = p̃lb ⊕ p, ∀p ∈ P.

The relative belief of singletons meets analogous dual properties. Their study
requires first to extend our analysis to a more general class of objects. Sum

3 The original statements from [6] have been reformulated according to the notation
of this paper.
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functions of the form ς(A) =
∑

B⊆A mς(B) whose Moebius transform mς meets
the normalization axiom, ς(Θ) =

∑
∅(A⊆Θ mς(A) = 1, but is not necessarily

non-negative, are called pseudo belief functions [44].
Plausibility functions are pseudo belief functions too, as they meet the nor-
malization constraint plb(Θ) = 1 for all b. Their Moebius transform [8]

µb(A)
.
=

∑

B⊆A

(−1)|A\B|plb(B) = (−1)|A|+1
∑

B⊇A

mb(B), A 6= ∅ (11)

is called basic plausibility assignment (µb(∅) = 0).
Both belief and plausibility functions can be represented as vectors of a Carte-
sian space B called belief space [11]. In that space they can be written as affine
combinations of the categorical belief functions bA (such that mbA

(A) = 1,
mbA

(B) = 0 ∀B 6= A), with coefficients given by their b.b.a. or basic plausi-
bility assignment, respectively:

b =
∑

∅6=A⊆Θ

mb(A)bA, plb =
∑

∅6=A⊆Θ

µb(A)bA. (12)

3.2 A (broken) symmetry

A direct consequence of the duality between belief and plausibility measures
is the existence of a striking symmetry between (relative) plausibility and
belief transform. A formal proof of this symmetry is based on the following
interesting property of the basic plausibility assignment µb [15].

Lemma 1
∑

A⊇{x} µb(A) = mb(x).

Theorem 3 Given a pair of belief/plausibility functions b, plb : 2Θ → [0, 1],
the relative belief transform of the belief function b coincides with the plau-
sibility transform of the associated plausibility function plb (interpreted as a
pseudo belief function):

b̃[b] = p̃l[plb].

Proof. Each pseudo belief function admits a (pseudo) plausibility function, as
in the case of standard belief functions, which can be computed as plς(A) =∑

B∩A6=∅ mς(B).
For the class of pseudo belief functions ς which correspond to the plausibility
of some belief function b (ς = plb for some b ∈ B), the pseudo plausibility
function is plplb(A) =

∑
B∩A6=∅ µb(B), as µb (11) is the Moebius inverse of plb.

When applied to the elements x ∈ Θ of the common frame of b, plb this yields
plplb(x) =

∑
B3x µb(B) = mb(x) by Lemma 1, which implies

p̃l[plb](x) =
plplb(x)∑

y∈Θ plplb(y)
=

mb(x)∑
y∈Θ mb(y)

= b̃[b]. 2
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The symmetry between relative plausibility and belief of singletons is broken
by the fact that the latter is not defined for belief functions with no singleton
focal sets. Since b̃ is itself an instance of relative plausibility (of a plausibility
function plb), and p̃lb always exists, this seems to contradict Theorem 3.
This superficial paradox finds an explanation in the combinatorial nature of
belief, plausibility, and commonality functions. As we proved in [15], while be-
lief measures are sum functions of the form b(A) =

∑
B⊂A mb(B) whose Moe-

bius transform mb is both normalized and non-negative, plausibility measures
are sum functions whose Moebius transform µb is not necessarily non-negative
(while commonality functions are not even normalized). Hence, the quantity

∑
x

plplb(x) =
∑
x

∑

A⊇{x}
µb(A) =

∑

A⊇Θ

µb(A)|A|

can be equal to zero, in which case p̃lplb
= b̃ does not exist.

3.3 Dual properties of the relative belief operator

The duality between b̃ and p̃lb (albeit imperfect to some extent) extends to the
transformations’ behavior with respect to Dempster’s rule of combination (9).
We first need to note that the orthogonal sum can be naturally extended to a
pair ς1, ς2 of pseudo belief functions too [16], by applying (9) to their Moebius
inverses mς1 , mς2 .

Proposition 3 When applied to a pair of pseudo belief functions ς1, ς2, Demp-
ster’s rule defined as in Equation (9) yields again a pseudo belief function.

We still denote the orthogonal sum of two pseudo belief functions ς1, ς2 by
ς1 ⊕ ς2. As plausibility functions are pseudo belief functions, Dempster’s rule
can then be formally applied to them as well. We can then prove a dual
commutativity result for relative beliefs. To this purpose, it is convenient to
introduce a dual form of the relative belief operator, mapping a plausibility
function to the corresponding relative belief of singletons: b̃ : PL → P , plb 7→
b̃[plb], where PL is the space of all plausibility functions, and

b̃[plb](x)
.
=

mb(x)∑
y∈Θ mb(y)

∀x ∈ Θ (13)

is defined as usual for belief functions b such that
∑

y mb(y) 6= 0.
Indeed, as b and plb are in 1-1 correspondence, we can indifferently define an
operator mapping a belief function b to its relative belief b̃, or mapping the
unique plausibility function plb associated with b to b̃. The following commu-
tativity theorem follows, as the dual of point 1) in Proposition 1.
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Theorem 4 The relative belief operator commutes with respect to Dempster’s
combination of plausibility functions: b̃[pl1 ⊕ pl2] = b̃[pl1]⊕ b̃[pl2].

Proof. The basic plausibility assignment of pl1 ⊕ pl2 is, according to (9):

µpl1⊕pl2(A) =
1

k(pl1, pl2)

∑

X∩Y =A

µ1(X)µ2(Y ).

Therefore, according to Lemma 1, the corresponding relative belief of single-
tons b̃[pl1 ⊕ pl2](x) (13) is proportional to:

mpl1⊕pl2(x) =
∑

A⊇{x}
µpl1⊕pl2(A)

=

∑

A⊇{x}

∑

X∩Y =A

µ1(X)µ2(Y )

k(pl1, pl2)
=

∑

X∩Y⊇{x}
µ1(X)µ2(Y )

k(pl1, pl2)
,

(14)

where mpl1⊕pl2(x) denotes the b.b.a. of the (pseudo) belief function which
corresponds to the plausibility function pl1 ⊕ pl2. On the other hand, as∑

X⊇{x} µb(X) = mb(x):

b̃[pl1](x) ∝ m1(x) =
∑

X⊇{x}
µ1(X), b̃[pl2](x) ∝ m2(x) =

∑

X⊇{x}
µ2(X).

Their Dempster’s combination is therefore:

(b̃[pl1]⊕ b̃[pl2])(x) ∝
( ∑

X⊇{x}
µ1(X)

)( ∑

Y⊇{x}
µ2(Y )

)
=

∑

X∩Y⊇{x}
µ1(X)µ2(Y ),

and by normalizing we get (14). 2

Theorem 4 implies that
b̃[(plb)

n] = (b̃[plb])
n. (15)

As an immediate consequence, an idempotence property which is the dual of
point 2) of Proposition 1 holds for the relative belief of singletons.

Corollary 1 If plb is idempotent with respect to Dempster’s rule, i.e. plb ⊕
plb = plb, then b̃[plb] is itself idempotent: b̃[plb]⊕ b̃[plb] = b̃[plb].

Proof. By Theorem 4 b̃[plb] ⊕ b̃[plb] = b̃[plb ⊕ plb], and if plb ⊕ plb = plb the
thesis immediately follows. 2

The dual results of the remaining two statements of Proposition 1 can be
proven in a similar fashion.

Theorem 5 If ∃x ∈ Θ such that b(x) > b(y) ∀y 6= x, y ∈ Θ, then

b̃[pl∞b ](x) = 1, b̃[pl∞b ](y) = 0 ∀y 6= x.
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Proof. Taking the limit on both sides of Equation (15) we get

b̃[pl∞b ] = (b̃[plb])
∞. (16)

Let us consider the quantity (b̃[plb])
∞ = limn→∞(b̃[plb])

n on the right hand
side. Since (b̃[plb])

n(x) = K(b(x))n (where K is a constant independent from
x), and x is the unique most believed state, it follows that

(b̃[plb])
∞(x) = 1, (b̃[plb])

∞(y) = 0 ∀y 6= x. (17)

Hence by (16) b̃[pl∞b ](x) = 1, and b̃[pl∞b ](y) = 0 for all y 6= x. 2

A similar proof can be given for the following generalization of Theorem 5.

Corollary 2 If ∃A ⊆ Θ (|A| = k) s.t. b(x) = b(y) ∀x, y ∈ A, b(x) > b(z)
∀x ∈ A, z ∈ Ac, then

b̃[pl∞b ](x) = b̃[pl∞b ](y) = 1/k ∀x, y ∈ A, b̃[pl∞b ](z) = 0 ∀z ∈ Ac.

It is crucial to point out that commutativity (Theorem 4) and idempotence
(Corollary 1) hold for combinations of plausibility functions, and not of belief
functions. Consider as an example the belief function b on the frame of size four
Θ = {x, y, z, w} determined by the following basic probability assignment:

mb({x, y}) = 0.4, mb({y, z}) = 0.4, mb(w) = 0.2. (18)

Its basic plausibility assignment is, according to (11), given by:

µb(x) = 0.4, µb(y) = 0.8, µb(z) = 0.4,

µb(w) = 0.2, µb({x, y}) = −0.4, µb({y, z}) = −0.4.
(19)

To check the validity of Theorems 4 and 5 let us analyze the two series (b̃[plb])
n

and b̃[(plb)
n]. By applying Dempster’s rule to the basic plausibility assignment

(19) (pl2b = plb⊕plb) we get a new basic plausibility assignment µ2
b with values

µ2
b(x) = 4/7, µ2

b(y) = 8/7, µ2
b(z) = 4/7, µ2

b(w) = −1/7, µ2
b({x, y}) = −4/7,

µ2
b({y, z}) = −4/7 (see Figure 2). To compute the corresponding relative belief

of singletons b̃[pl2b ] we first need to get the plausibility values:

pl2b ({x, y, z}) = µ2
b(x) + µ2

b(y) + µ2
b(z) + µ2

b({x, y}) + µ2
b({y, z}) = 8/7,

pl2b ({x, y, w}) = 1, pl2b ({x, z, w}) = 1, pl2b ({y, z, w}) = 1,

which imply (by definition plb(A)
.
= 1−b(Ac)): b2(w) = −1/7, b2(z) = b2(y) =

b2(x) = 0, i.e., b̃[pl2b ] = [0, 0, 0, 1]′ (representing probability distributions as
vectors of the form [p(x), p(y), p(z), p(w)]′).

17



{y,z}

{x,y}

{w}

{z}

{y}

{x}

{x} {y} {z} {w} {x,y}{y,z}

{x}

{x}

{x}

{y}

{y}

{y} {y}

{y}

{y} {y}

{z}

{z}

{z}

{w}

{x,y}

{y,z}

Fig. 2. Intersection of focal elements in Dempster’s combination of the basic plau-
sibility assignment (19) with itself. Non-zero mass events for each addendum
µ1 = µ2 = µb correspond to rows/columns of the table, each entry of the table
hosting the related intersection.

Theorem 4 is confirmed as, by (18) (being {w} the only singleton with non-
zero mass), b̃ = [0, 0, 0, 1]′ so that b̃ ⊕ b̃ = [0, 0, 0, 1]′ and b̃[.] commutes with
plb⊕. By combining pl2b with plb one more time we get the basic plausibility
assignment:

µ3
b(x) = 16/31, µ3

b(y) = 32/31, µ3
b(z) = 16/31, µ3

b(w) = −1/31,

µ3
b({x, y}) = −16/31, µ3

b({y, z}) = −16/31,

which corresponds to pl3b ({x, y, z}) = 32/31, pl3b ({x, y, w}) = 1, pl3b ({x, z, w}) =
1, pl3b ({y, z, w}) = 1, i.e.: b3(w) = −1/31, b3(z) = b3(y) = b3(x) = 0, and
b̃[pl3b ] = [0, 0, 0, 1]′, which again is equal to b̃⊕ b̃⊕ b̃ as Theorem 4 guarantees.
The series of basic plausibility assignments (µb)

n clearly converges to:

µn
b (x) → 1/2+, µ3

b(y) → 1+, µ3
b(z) → 1/2+, µ3

b(w) → 0−,

µ3
b({x, y}) → −1/2−, µ3

b({y, z}) → −1/2−,

associated with the following plausibility values: limn→∞ plnb ({x, y, z}) = 1+,
plnb ({x, y, w}) = plnb ({x, z, w}) = plnb ({y, z, w}) = 1 ∀n ≥ 1, which in turn
correspond to the following values of belief of singletons: limn→∞ bn(w) = 0−,
bn(z) = bn(y) = bn(x) = 0 ∀n ≥ 1. Therefore:

limn→∞ b̃[pl∞b ](w) = limn→∞
bn(w)
bn(w)

= 1,

limn→∞ b̃[pl∞b ](x) = limn→∞ b̃[pl∞b ](y) = limn→∞ b̃[pl∞b ](z)

= limn→∞ 0
bn(w)

= limn→∞ 0 = 0,

in perfect agreement with Theorem 5.
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3.4 Representation theorem for relative beliefs

A dual of the representation theorem (Proposition 2) for the relative belief
transform can also be proven, once we recall a useful result on Dempster’s
sum of affine combinations [16].

Proposition 4 The orthogonal sum b⊕∑
i αibi,

∑
i αi = 1 of a belief function

b with any 4 affine combination of belief functions is itself an affine combina-
tion of the partial sums b⊕ bi, namely:

b⊕∑

i

αibi =
∑

i

γi(b⊕ bi), (20)

where γi = αik(b,bi)∑
j

αjk(b,bj)
and k(b, bi) is the normalization factor of the partial

Dempster’s sum b⊕ bi.

Again, the duality between b̃ and p̃lb implies that the relative belief of sin-
gletons represents the associated plausibility function plb, and not the corre-
sponding belief function b: b̃⊕ p 6= b⊕ p.

Theorem 6 The relative belief of singletons b̃ represents perfectly the corre-
sponding plausibility function plb when combined with a probability via (ex-
tended) Dempster’s rule: b̃ ⊕ p = plb ⊕ p for each Bayesian belief function
p ∈ P.

Proof. In virtue of Equation (12) we can express a plausibility function as an
affine combination of all the categorical belief functions bA. We can then apply
the commutativity property (20), obtaining:

plb ⊕ p =
∑

A⊆Θ

ν(A)p⊕ bA (21)

where ν(A) = µb(A)k(p,bA)∑
B⊆Θ

µb(B)k(p,bB)
and p ⊕ bA =

∑
x∈A

p(x)bx

k(p,bA)
, with k(p, bA) =

∑
x∈A p(x). Once replaced these expressions in (21) we get: plb ⊕ p =

=

∑

A⊆Θ

µb(A)
( ∑

x∈A

p(x)bx

)

∑

B⊆Θ

µb(B)
( ∑

y∈B

p(y)
) =

∑

x∈Θ

p(x)
( ∑

A⊇{x}
µb(A)

)
bx

∑

y∈Θ

p(y)
( ∑

B⊇{y}
µb(B)

) =

∑

x∈Θ

p(x)mb(x)bx

∑

y∈Θ

p(y)mb(y)
,

once again by Lemma 1. But this is exactly b̃ ⊕ p, as a direct application of
Dempster’s rule (9) shows. 2

4 In fact the collection {bi} is required to include at least a belief function which is
combinable with b, [16].
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Theorem 6 can be obtained from Proposition 2 by replacing b with plb and
p̃lb with b̃ in virtue of their duality. It is natural to suppose other properties
of upper probabilities could in the future be found by analogous transforma-
tions of known propositions on lower probabilities, as a useful mathematical
characterization of the relation between them.

Once again, the representation theorem 6 is about combinations of plausibility
functions (as pseudo belief functions) and not combinations of proper belief
functions. Going back to the previous example, the combination b⊕b of b with
itself has b.b.a.:

mb⊕b({x, y}) =
mb({x, y}) ·mb({x, y})

k(b, b)
=

0.16

0.68
= 0.235,

mb⊕b({y, z}) =
mb({y, z}) ·mb({y, z})

k(b, b)
=

0.16

0.68
= 0.235,

mb⊕b(w) =
mb(w) ·mb(w)

k(b, b)
=

0.04

0.68
= 0.058,

mb⊕b(y) =
mb({x, y}) ·mb({y, z}) + mb({y, z}) ·mb({x, y})

k(b, b)
= 0.47,

which obviously yields b̃⊕ b =
[
0, 0.47

0.528
, 0, 0.058

0.528

]′ 6= b̃⊕ b̃ = [0, 0, 0, 1]′.
The basic reason for that is that the plausibility function of a sum of two belief
functions is not the sum of the associated plausibilities: [plb1 ⊕ plb2 ] 6= plb1⊕b2 .

3.5 Two families of probability transforms

The following table summarizes the duality results we just presented:

b ↔ plb

p̃lb ↔ b̃

b⊕ p = p̃lb ⊕ p ∀p ∈ P ↔ plb ⊕ p = b̃⊕ p ∀p ∈ P
p̃lb[b1 ⊕ b2] = p̃lb[b1]⊕ p̃lb[b2] ↔ b̃[plb1 ⊕ plb2 ] = b̃[plb1 ]⊕ b̃[plb2 ]

b⊕ b = b ` p̃l[b]⊕ p̃l[b] = p̃l[b] ↔ plb ⊕ plb = plb ` b̃[plb]⊕ b̃[plb] = b̃[plb].

Note that, just as Voorbraak’s and Cobb’s results are not valid for all pseudo
belief functions but only for proper belief functions, the above dual results
do not hold for all pseudo belief functions either, but only for those pseudo
belief functions which are plausibility functions. These results bring about
a subdivision of all probability transformations in two families, related to
Dempster’s sum and affine combination respectively. Once we recall that [9]

Proposition 5 Both pignistic BetP [b] and orthogonal π[b] transform (3) com-
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mute with respect to affine combination. Whenever
∑

i αi = 1 we have that:

π
[ ∑

i

αibi

]
=

∑

i

αiπ[bi], BetP
[ ∑

i

αibi

]
=

∑

i

αiBetP [bi].

we realize that we can in fact distinguish two families of probability transfor-
mations, determined by their behavior with respect to two operators acting
on belief functions: affine combination (in the space of belief functions) and
Dempster’s rule [38,19,18].

The notion that there exist two distinct families of probability transformations,
each determined by the operator they commute with, was already implicitly
present in the literature. Smets’ linearity axiom [45], which lays at the founda-
tion of the pignistic transform, obviously corresponds (even though expressed
in a somewhat different language) to commutativity with affine combination
of belief functions. To address the criticism such axiom was subject to, Smets
introduced later its formal justification based on an expected utility argument
in the presence of conditional evidence [43].
On the other hand, Cobb and Shenoy defended the commutativity with respect
of Dempster’s rule, on the basis that the Dempster-Shafer theory of evidence
is a coherent framework of which Dempster’s rule is an integral part, and
that a Dempster-compatible transformation can provide a useful probabilistic
semantic for belief functions.

Incidentally, there seems to be a flaw in Smets’ argument that the pignis-
tic transform is uniquely determined as the probability transformation which
commutes with affine combination: in [9] we indeed proved that the orthogo-
nal transform (3) also enjoys the same property.
Analogously, we showed here that the plausibility transform is not unique as
a probability transformation which commutes with ⊕ (even though, in this
latter case, the transformation is applied to different objects).

We add a further element to this debate here, by proving that the plausibility
transform, even though it does not obviously commute with affine combina-
tion, does commute with the convex closure (22) of belief functions in the
belief space B:

Cl(b1, ..., bk) =
{
b ∈ B : b = α1b1 + · · ·+ αkbk,

∑

i

αi = 1, αi ≥ 0 ∀i
}
. (22)

The two facts are not in contradiction: as a matter of fact, the behavior of the
plausibility transform in this respect reflects a similar behavior by Dempster’s
rule (proved in [16]), supporting the argument that the plausibility transform
is indeed naturally associated with the D-S framework.
Let us first understand its relation with affine combination.
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Lemma 2 For all α ∈ R we have that:

p̃l
[
αb1 + (1− α)b2

]
= β1p̃l[b1] + β2p̃l[b2],

where

β1 =
αkpl1

αkpl1 + (1− α)kpl2

, β2 =
αkpl2

αkpl1 + (1− α)kpl2

.

Proof. By definition, the plausibility values of the affine combination αb1 +
(1− α)b2 are pl[αb1 + (1− α)b2](x) =

=
∑

A⊇{x}
mαb1+(1−α)b2(A) =

∑

A⊇{x}

[
αm1(A) + (1− α)m2(A)

]

= α
∑

A⊇{x}
m1(A) + (1− α)

∑

A⊇{x}
m2(A) = αpl1(x) + (1− α)pl2(x).

Hence, after denoting by kpli =
∑

y∈Θ pli(y) the total plausibility of the sin-
gletons w.r.t. bi, the values of the relative plausibility of singletons can be
computed as: p̃l[αb1 + (1− α)b2](x) =

=
αpl1(x) + (1− α)pl2(x)∑

y∈Θ[αpl1(y) + (1− α)pl2(y)]
=

αpl1(x) + (1− α)pl2(x)

αkpl1 + (1− α)kpl2

=
αpl1(x)

αkpl1 + (1− α)kpl2

+
(1− α)pl2(x)

αkpl1 + (1− α)kpl2

=
αkpl1

αkpl1 + (1− α)kpl2

p̃l1(x) +
(1− α)kpl2

αkpl1 + (1− α)kpl2

p̃l2(x).

= β1p̃l1(x) + β2p̃l2(x). 2

Theorem 7 The relative plausibility operator commutes with convex closure
in the belief space: whenever b1, ..., bm ∈ B are belief functions defined on the
same frame, p̃l[Cl(b1, ..., bm)] = Cl(p̃l[b1], ..., p̃l[bm]).

Proof. The proof follows the structure of that of Theorem 3 and Corollary 3
in [16], on the commutativity of Dempster’s rule and convex closure.
Formally, we need to prove that:

(1) whenever b =
∑

k αkbk, αk ≥ 0,
∑

k αk = 1, we have that p̃l[b] =
∑

k βkp̃l[bk]
for some convex coefficients βk;

(2) whenever p ∈ Cl(p̃l[bk], k) (i.e., p =
∑

k βkp̃l[bk] with βk ≥ 0,
∑

k βk = 1),
there exists a set of convex coefficients αk ≥ 0,

∑
k αk = 1 such that

p = p̃l[
∑

k αkbk].

Point (1) follows directly from Lemma 2. Proving (2), instead, is equivalent
to proving that there exist αk ≥ 0,

∑
k αk = 1 such that:

βk =
αkkplk∑
j αjkplj

∀k = 1, ...,m, (23)
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which is equivalent to:

αk =
βk

kplk

·∑
j

αjkplj ∝
βk

kplk

∀k = 1, ..., m,

as
∑

j αjkplj does not depend on k. If we pick αk = βk

kplk

the system (23) is met:

by further normalization we obtain as desired. 2

It is left to future work to complete this analysis, and check whether other
transforms commute with either affine combination or Dempster’s rule, there-
fore enriching our understanding of the two families of transformations.

4 Generalizations of the relative belief operator

A serious issue with the relative belief of singletons is its applicability. In
opposition to relative plausibility, b̃ does not exist for a large class of belief
functions (those which assign no mass to singletons). Even though this singular
case involves only a small fraction of all belief measures (Section 4.1), this
issue arises in many practical cases, for instance when using fuzzy membership
functions to model the evidence.

4.1 Zero mass to singletons as a singular case

In the binary case Θ = {x, y}, according to (7) the only belief function
which does not admit a relative belief of singletons is the vacuous one bΘ:
mbΘ(Θ) = 1. Its b.b.a. is mbΘ(x) = mbΘ(y) = 0 so that

∑
x mbΘ(x) = 0 and b̃Θ

does not exist. Symmetrically, the pseudo belief function ς = plbΘ (for which
plbΘ(x) = plbΘ(y) = 1) is such that plplbΘ

= bΘ, so that p̃lplbΘ
does not exist.

Figure 3-left illustrates the location of b̃ in the simple binary case (in which
each pseudo belief function can be represented as a vector of R2), and those
of the dual singular points bΘ, ς = plbΘ .
As illustrated by the binary case, the set of belief functions for which b̃ does

not exist is a lower-dimensional fraction of the set B of all belief functions. To
prove this, let us compute the region spanned by the most common probability
transformations: the plausibility and the pignistic transforms.
Theorem 7 proves that the plausibility transform commutes with convex clo-
sure (22). As (by Proposition 4, [9]) the pignistic transform (2) commutes with
affine combination, we have that BetP also commutes with Cl:

BetP [Cl(b1, ..., bm)] = Cl(BetP [bi], i = 1, ..., m).
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Fig. 3. Left: belief functions b = [mb(x),mb(y)]′ and plausibility functions
plb = [plb(x) = 1−mb(y), plb(y) = 1−mb(x)]′ on Θ = {x, y} can be represented as
points of R2 [11]. The locations of b̃ = [ mb(x)

mb(x)+mb(y) ,
mb(y)

mb(x)+mb(y) ]
′ and the singular

points bΘ = [0, 0]′ and plbΘ = [1, 1]′ are shown. Right: For the class of belief func-
tions {b :

∑
x mb(x) = 0}, pignistic function and relative plausibility are allowed to

span only a proper subset of the probability simplex (delimited by dashed lines in
the ternary case Θ = {x, y, z}).

In the case of both transformations, therefore, to determine the image of any
convex set Cl(b1, ..., bm) of belief functions it is sufficient to compute the trans-
formations of its vertices. The space of all belief functions B .

= {b : 2Θ →
[0, 1]}, in particular, is the convex closure of all the categorical belief func-
tions bA: B = Cl(bA, A ⊆ Θ) [11].
The image of a categorical belief function bA (a vertex of B) under either
plausibility or pignistic transform is:

p̃lbA
(x) =

∑
B⊇{x} mbA

(B)
∑

B⊇{x} mbA
(B)|B| =





1
|A| x ∈ A

0 else

.
= PA =

∑

B⊇{x}

mbA
(B)

|B| =

= BetP [bA](x), so that BetP [B] = Cl(BetP [bA], A ⊆ Θ) = Cl(PA, A ⊆ Θ) =
P = p̃l[B]. The outputs of both pignistic and relative plausibility transforms
span the whole probability simplex P .
Consider, however, the set of (singular) belief functions which assign zero mass
to singletons. They live in Cl(bA, |A| > 1) as, according to Equation (12) they
have the form b =

∑
|A|>1 mb(A)bA, with mb(A) ≥ 0,

∑
|A|>1 mb(A) = 1. The

region of P spanned by their probability transforms is therefore:

p̃l[Cl(bA, |A| > 1)] = Cl(p̃lbA
, |A| > 1) = Cl(PA, |A| > 1)

= Cl(BetP [bA], |A| > 1) = BetP [Cl(bA, |A| > 1)].
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The result is illustrated by Figure 3-right in the ternary case Θ = {x, y, z}. If
(7) is not met, both probability transformations span only a limited region

Cl(P{x,y},P{x,z},P{y,z},PΘ) = Cl(P{x,y},P{x,z},P{y,z})

of the probability simplex (the triangle delimited by dashed lines in Figure
3-right).

4.2 The family of relative mass probability transformations

One may argue that even though the “singular” case concerns only a small
fraction of all belief and probability measures, in many practical application
there is a bias towards some particular models which are the most exposed to
the problem.
For example, uncertainty is commonly represented using a fuzzy membership
function [31]. If the membership function has only a finite number of values,
then it is equivalent to a belief function whose focal sets are linearly ordered
under set inclusion A1 ⊂ · · · ⊂ An = Θ, |Ai| = i, or consonant belief function
[38,25]. In that case, at most one focal element A1 is a singleton. So, the
vast majority of the useful information in the b.b.a. is contained in the non-
singleton focal elements.

Relative belief is in fact only one element of an entire family of probability
transformations. Indeed, b̃ can be thought of as the transform which, given a
belief function b:

(1) retains the focal elements of size 1 only, yielding an unnormalized belief
function;

(2) computes (indifferently) the latter’s relative plausibility/pignistic trans-
formation:

b̃(x) =

∑
A⊇x,|A|=1 mb(A)

∑
y

∑
A⊇x,|A|=1 mb(A)

=
mb(x)

kmb

=

∑
A⊇x,|A|=1

mb(A)
|A|∑

y

∑
A⊇x,|A|=1

mb(A)
|A|

.

Following this scheme, a family of natural generalizations of the relative belief
transform is obtained by, given an arbitrary belief function b:

(1) retaining the focal elements of size s only;
(2) computing either the resulting relative plausibility ...
(3) ... or the associated pignistic transformation.

Now, both alternatives 2) or 3) yield the same probability distribution. Indeed,
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the application of the relative plausibility transform yields:

p(x) =

∑

A⊇{x}:|A|=s

mb(A)

∑

y∈Θ

∑

A⊇{y}:|A|=s

mb(A)
=

∑

A⊇{x}:|A|=s

mb(A)

∑

A⊆Θ:|A|=s

mb(A)|A| =

∑

A⊇{x}:|A|=s

mb(A)

s
∑

A⊆Θ:|A|=s

mb(A)
,

while applying the pignistic transform yields:

p(x) =

∑

A⊇{x}:|A|=s

mb(A)

|A|
∑

y∈Θ

∑

A⊇{y}:|A|=s

mb(A)

|A|
=

s
∑

A⊇{x}:|A|=s

mb(A)

s
∑

y∈Θ

∑

A⊇{y}:|A|=s

mb(A)
, (24)

i.e., the same result. The following natural extension of the relative belief
operator is therefore well defined.

Definition 2 Given a belief function b : 2Θ → [0, 1] with b.b.a. mb, we call
relative mass transformation of b of level s the transform M̃s[b] which maps b
to the probability distribution (24).

We denote by m̃s the output of the relative mass transform of level s.

4.3 Classical probability transformations as convex combinations of relative
mass transformations

It is easy too see that both relative plausibility of singletons and pignistic
probability are convex combinations of all the (n) relative mass probabilities
{m̃s, s = 1, ..., n}. Namely, let us denote by kb,s =

∑
A⊆Θ:|A|=s mb(A) the total

mass of focal elements of size s, and by plb(x; s) =
∑

A⊇{x}:|A|=s mb(A) the
contribution to the plausibility of x of the same size-s focal elements.
Immediately,

∑
y plb(y) =

=
∑
y

∑

A⊇{y}
mb(A) =

∑

A⊆Θ

mb(A)|A| =
n∑

r=1

r
( ∑

A⊆Θ,|A|=r

mb(A)
)

=
n∑

r=1

rkb,r.

Therefore we obtain for the relative plausibility of singletons the following
convex decomposition into relative mass probabilities m̃s:

p̃lb(x) =
plb(x)∑
y plb(y)

=

∑
s plb(x; s)∑

r rkb,r

=
∑
s

plb(x; s)∑
r rkb,r

=
∑
s

plb(x; s)

skb,s

skb,s∑
r rkb,r

=
∑
s

αsm̃s(x),

(25)
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as m̃s(x) = plb(x;s)
skb,s

, whose coefficients

αs =
skb,s∑
r rkb,r

∝ skb,s =
∑
y

plb(y; s)

measure for each level s the total plausibility contribution of the focal elements
of size s. In the case of the pignistic probability we get:

BetP [b](x) =
∑

A⊇{x}

mb(A)

|A| =
∑
s

∑

A⊇{x},|A|=s

mb(A)

s
=

∑
s

1

s

∑

A⊇{x},|A|=s

mb(A)

=
∑
s

1

s
plb(x; s) =

∑
s

kb,s
plb(x; s)

skb,s

=
∑
s

kb,sm̃s(x),

(26)
where the coefficients βs = kb,s measure for each level s the mass contribution
of the focal elements of size s.

4.4 Relative mass transforms as low-cost proxies

Accordingly, the relative mass probabilities can be seen as basic components of
both the pignistic and the plausibility transform, associated with the evidence
carried by focal elements of a specific size.
As such transforms can be computed just by considering size-s focal elements,
they can also be thought of as low-cost proxies for both relative plausibility
and pignistic probability, since only the

(
n
s

)
size-s focal elements (instead of

the initial 2n) have to be stored, while all the others can be dropped without
further processing.
We can think of two natural criteria for such an approximation of p̃l, BetP
via the relative mass transforms:

• (C1) we retain the component s whose coefficient αs/βs is the largest in the
convex decomposition (25)/(26);

• (C2) we retain the component associated with the minimal size focal ele-
ments.

Clearly, the relative belief transformation coincides with this second approx-
imation if

∑
x mb(x) 6= 0. When the mass of singletons is nil, instead, the

second criterion delivers a natural extension of the relative belief operator:

b̃ext(x)
.
=

∑
A⊇{x}:|A|=min mb(A)

|A|min
∑

A⊆Θ:|A|=min mb(A)
. (27)

The two approximation criteria favor different aspects of the original belief
function. (C1) focuses (in two different ways) on the strength of the evidence
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carried by focal elements of equal size. Note that the optimal (C1) approxi-
mations of plausibility and pignistic transform are in principle distinct:

ŝ[p̃l] = arg max
s

skb,s, ŝ[BetP ] = arg max
s

kb,s.

The best approximation of the pignistic probability is not necessarily the best
approximation of the relative plausibility of singletons. Criterion (C2) favors
instead the precision of the pieces of evidence that make up the belief function
b. Let us compare these two approaches in two simple scenarios.

While (C1) is (at least superficially) a sensible, rational principle (the se-
lected proxy must be the greatest contributor to the actual classical probabil-
ity transformation), (C2) seems harder to justify. Why should one retain only
the smallest focal elements, regardless their mass?
The attractive feature of the relative belief of singletons, among (C2) approx-
imations, is its simplicity: the original mass is directly re-distributed onto the
singletons. What about the “extended” operator (27)?

Consider a scenario in which we want to approximate the plausibility/pignistic
transform of a belief function b : 2Θ → [0, 1], with b.b.a. mb(A) = mb(B) = ε,
|A| = |B| = 2, and mb(Θ) = 1 − 2ε À mb(A) (Figure 4-left). Its relative
plausibility of singletons is given by:

p̃lb(x) ∝ mb(A) + mb(Θ), p̃lb(y) ∝ mb(A) + mb(B) + mb(Θ),

p̃lb(z) ∝ mb(B) + mb(Θ), p̃lb(w) ∝ mb(Θ) ∀w 6= x, y, z.

Its pignistic probability reads instead as:

BetP (x) = mb(A)
2

+ mb(Θ)
n

, BetP (y) = mb(A)+mb(B)
2

+ mb(Θ)
n

,

BetP (z) = mb(B)
2

+ mb(Θ)
n

, BetP (w) = mb(Θ)
n

∀w 6= x, y, z.

Both transformations have a profile similar to that of Figure 4-right (when
assuming mb(A) > mb(B)). Now, according to criterion (C1), the best approx-
imation (among all relative mass transformations) of both p̃lb and BetP [b] is
given by selecting the focal elements of size n, i.e., Θ, as the greatest contrib-
utor to both the convex sums (25) and (26).
However, it is easy to see that this yields as an approximation the average
probability p(w) = 1/n ∀w ∈ Θ, which carries no information at all. In par-
ticular, the fact that the available evidence supports to a limited extent the
singletons x, y and z is completed discarded, and no decision is possible.
If, on the other hand, we operate according to the criterion (C2), we end up
selecting the size-2 focal elements A and B. The resulting approximation is

m̃2(x) ∝ mb(A), m̃2(y) ∝ mb(A) + mb(B), m̃2(z) ∝ mb(B),
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Fig. 4. Left: the original belief function in the first scenario discussed in the text.
Right: corresponding profile of both relative plausibility of singletons and pignistic
probability.

m̃2(w) = 0 ∀w 6= x, y, z. This has the same profile as that of p̃lb or BetP [b]
(Figure 4-right): the decision made accordingly corresponds to that made
based on p̃lb or BetP [b].
We can conclude that, at least in some situations, m̃2 = b̃ext is the best ap-
proximation of both plausibility and pignistic transforms in a decision-making
sense: we end up making the same decision, at a much lower (in general)
computation cost.

Consider however a second scenario, in which a belief function has only two
focal elements A and B, with |A| > |B| and mb(A) À mb(B) (Figure 5-left).
Both relative plausibility and pignistic probability have the following values:

Fig. 5. Left: the belief function of the second scenario. Right: corresponding profile
of both relative plausibility of singletons and pignistic probability.

p̃lb(w) = BetP (w) ∝ mb(A) w ∈ A, p̃lb(w) = BetP (w) ∝ mb(B) w ∈ B,

and correspond to the profile of Figure 5-right. In this second case, (C1) and
(C2) generate the uniform probability on the elements of A (as mb(A) À
mb(B)) and the uniform probability on the elements of B (as |B| < |A|),
respectively. Therefore, in this scenario it is (C1) that yields the best ap-
proximation of both plausibility and pignistic transforms in a decision-making
perspective.
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The second scenario corresponds to a situation in which the evidence is highly
conflicting. In such a case we are given two opposite decision alternatives, and
it is quite difficult to say which one makes more sense. Should we privilege
precision or evidence support?
Some insight on this issue comes from recalling that higher-size focal elements
are expression of “epistemic” uncertainty (in Smets’ terminology), as they
come from missing data/lack of information on the problem at hand. Besides,
by their own nature they allow less resolution for decision making (in the sec-
ond scenario above, if we believe to the result of (C1) we are left uncertain
on whether to pick one of |A| outcomes, while if we believe in (C2) the uncer-
tainty is restricted to |B| outcomes). In conclusion, it is not irrational, in case
of conflicting evidence, to favor precision over evidence support. This amounts
to choosing the approximation criterion (C2), which ultimately supports the
case for the relative belief operator and its natural extension (27).

5 Conclusions

In this paper we discussed the rationale of the relative belief transform in both
the probability-bound and Dempster-Shafer interpretations of belief functions.
Even though neither the relative belief of singletons nor the relative plausibil-
ity of singletons are consistent with the original belief function, an interesting
rationale in terms of optimal strategies in a non-cooperative game can be at-
tached to such mappings when one assumes a belief function is a set of proba-
bility distributions. We proved that relative belief commutes with Dempster’s
orthogonal sum, meets a number of properties which are the duals of those met
by the relative plausibility of singletons, and commutes with convex closure in
a similar way as Dempster’s rule does, supporting the argument that relative
plausibility and belief transform are indeed naturally associated with the D-
S framework, and highlighting a classification of probability transformations
into two families. To address the issue of its limited applicability, we pointed
out that relative belief is just a member of a class of relative mass transforma-
tions, which can be interpreted as low-cost proxies for both plausibility and
pignistic transforms.
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