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Abstract

The Transferable Belief approach to the Theory of Evidence is based on the pignistic transform which, mapping belief functions to
probability distributions, allows to make “precise” decisions on a set of disjoint hypotheses via classical utility theory. In certain
scenarios, however, such as medical diagnosis, the need for an “imprecise” approach to decision making arises, in which sets of
possible outcomes are compared. We propose here a framework for imprecise decision derived from the TBM, in which belief
functions are mapped to k-additive belief functions (i.e., belief functions whose focal elements have maximal cardinality equal
to k) rather than Bayesian ones. We do so by introducing two alternative generalizations of the pignistic transform to the case
of k-additive belief functions. The latter has several interesting properties: depending on which properties are deemed the most
important, the two distinct generalizations arise. The proposed generalized transforms are empirically validated by applying them
to imprecise decision in concrete pattern recognition problems.

Keywords: Theory of evidence, Transferable Belief Model, pignistic transform, k-additive belief functions, generalization,
geometric approach

1. Introduction

Decision making is a common issue in applied science, as
people or machines need to make inferences about the state of
the external world, and take appropriate actions. Such state is
typically assumed to be described by a probability distribution
over a set of alternative hypotheses, which in turn needs to be
inferred from the available data. Sometimes, however, as in
the case of extremely rare events (e.g., a volcanic eruption),
few statistics are available to drive such inference. Part of the
data can be missing. In all practical cases the available evi-
dence can only provide some sort of constraint on the unknown,
“true” probability governing the process. Different kinds of
constraints are associated with different uncertainty measures
or imprecise probabilities.

The Theory of Evidence or Dempster-Shafer Theory (DST),
[1, 2] is centered on a particular class of imprecise probabilities
[3] called belief functions. DST allows to distinguish between
imprecision due to the subjectivity of the point of view, and
randomness inherent to the phenomenon of interest [4], and is
efficient at handling conflicting, not entirely reliable or partial
data.

Making decisions based on evidence in the form of a be-
lief function, however, is not trivial, even though a number of
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approaches have been proposed in the past [5, 6, 7]. On the
other hand, decision making is well established and intuitive in
a probabilistic context: decisions can be evaluated by assess-
ing their ability to provide a winning strategy on the long run
in a game theory context, or maximize return in a utility theory
framework. For these reasons probabilistic decision making is
the basis of the most popular approach to DST, the Transferable
Belief Model (TBM) [2]. In the latter, the various pieces of in-
formation are combined in the form of belief functions, while
the result is eventually converted into a probability distribution
to make a decision. Several methods for mapping a belief func-
tion to a probability or “probability transforms” [8] have been
proposed, the most popular being the original pignistic trans-
form [2] proposed in the TBM, which is motivated by the prin-
ciple of insufficient reason [9] (even though its justification is
based on more elaborated arguments).

1.1. Motivations

In some practical scenarios, however, imprecise decision
making is of interest. We call imprecise decision a setting in
which several groups of hypotheses of different cardinalities
are compared, and one of them is selected. When the selected
group is the set gathering all the possible hypotheses the de-
cision is so imprecise that, in practice, no decision is made.
Conversely, in the case in which a singleton set is selected, the
decision is “precise”. Imprecise decisions have important ap-
plications in, among others, gesture recognition [10] or hand-
writing recognition [11].
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In this paper we propose an approach to imprecise decision
making based on k-additive belief functions, i.e., belief func-
tions whose non-zero mass subsets or “focal elements” have
size at most k. In particular, we propose to generalize the pig-
nistic transform to k-additive mass functions, where k is a pa-
rameter to tune. The interest of this generalization is manyfold.

In first place, k-additive mass functions are intermediate ob-
jects between probabilities and classical belief functions, whose
study can shed light on the various links between probability
theory and theory of evidence [12, 13]. Secondly, as they limit
the cardinality of the focal elements, they can be useful to limit
the computational complexity of DST which has been recog-
nized as its most crucial drawback. Finally, and more relevantly
to decision making, a k-additive pignistic transform provides an
interesting solution to the problem of imprecise decisions, as k-
additive belief functions can help tuning the imprecision of the
decision thanks their parameter k. We propose two different k-
additive generalizations of the pignistic transform, derived one
from decision making considerations, the other for a geometric
analysis of the set of k-additive belief functions dominating the
belief function to map.

1.2. Paper outline

Section 2 recalls the basic notions of DST and its geomet-
ric interpretation. Section 3 recalls the basis of the Transfer-
able Belief Model and survey the literature around the pignistic
transform: the pignistic level in the TBM, the axiomatic justi-
fications of the pignistic transform, and its geometrical proper-
ties. We also summarize the state-of-the-art on the probability
transformation problem, including pre-existing generalizations
and inverse transformations of the pignistic function. Section
4 motivates our interest in imprecise decision making with the
help of some toy examples. As it is recalled in Section 3, the
pignistic transform has several interesting properties. Depend-
ing on the properties which are deemed most important, two
distinct generalizations are introduced. Section 5 presents a first
generalization derived from decision making arguments. Sec-
tion 6 presents instead a generalization derived from geomet-
rical considerations, starting from the behavior of the pignistic
transform as center of mass of the set of dominating 1-additive
(Bayesian) belief functions. These two generalizations are then
investigated from a mathematical and a geometrical point of
view, in order to understand their properties and verify that
they are admissible generalizations of the pignistic transform
(Section 7). Finally, their behavior is compared in real-world
pattern recognition problems for which imprecise decisions are
relevant (Section 8). Finally, we discuss our results and provide
concluding remarks in Section 9, while Appendix A collects
some mathematical proofs.

2. Belief functions and their geometric representation

2.1. Dempster-Shafer theory

Let Ω =
{
ω1, ..., ω|Ω|

}
be a finite set, called frame or state-

space, which is made of exclusive and exhaustive hypotheses.
A mass function m is defined on the power set of Ω, denoted

by P(Ω), with values in [0, 1], such that
∑

A⊆Ω m (A) = 1 and
m(∅) = 0. The value m(A) measures the subjective belief an
agent commits to the subset of hypotheses A. As m has the
structure of a Choquet’s capacity, it is possible to define other
functions which are equivalent to m via Möbius inversions [14].
The belief function b is defined as:

b (A) =
∑
B⊆A

m (B) , ∀A ⊆ Ω (1)

Basically, b (A) is the sum of the masses of all the pieces of
evidence which imply A, and corresponds to the lower bound
of all the subjective probabilities which are consistent with the
given evidence. Dually, the plausibility function

pl (A) =
∑

B∩A,∅

m (B) ,∀A ⊆ Ω (2)

determines an upper bound for such probability values, and
measures the evidence which does not contradict A. Finally,
the commonality function

q (A) =
∑
A⊆B

m (B) ,∀A ⊆ Ω (3)

measures the amount of support that a set could potentially re-
ceive from its supersets, if the knowledge were more precise.
Thus, the commonality function also measures the imprecision
of the knowledge encoded by the mass function. Finally, m, b,
pl and q are four equivalent representations of the same knowl-
edge, and:

m(A) =
∑
A⊆B

(−1)|B|−|A|q(B),

q(A) =
∑

B⊆A,B,∅

(−1)|B|+1 pl(B)

m(A) =
∑
B⊆A

(−1)|A|−|B|b(B).

(4)

A subset F ⊆ Ω such that m (F) > 0 is called a focal element
of m. The union of all the focal elements of m is called the core
of m, and is denoted by F (m). If the c focal elements of m
are nested (F1 ⊂ F2 ⊂ . . . ⊂ Fc), m is said to be consonant.
If all the focal elements are singletons, then, m is said to be
Bayesian. A Bayesian mass function is in a trivial one-to-one
correspondence with a probability distribution. We call degrees
of freedom of a mass function m the elements of P(Ω) that can
potentially be focal elements of m. For instance, a Bayesian
belief function has |Ω| degrees of freedom, while a generic be-
lief function has 2|Ω| degrees of freedom, corrsponding to all the
elements of P(Ω).

Two mass functions m[1] and m[2], based on pieces of evi-
dence provided by two independent and reliable sources can be
combined into a new mass function m[∩] by means of the con-
junctive combination ∩©, defined as:

m[∩](A) =
[
m[1]

∩©m[2]
]

(A) = K12

∑
B∩C=A

m[1] (B) m[2] (C) (5)

∀A ⊆ Ω, where

K12 =
1

1 −
∑

B∩C=∅ m[1] (B) · m[2] (C)
(6)
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measures the conflict between m[1] and m[2]. The operator ∩© is
symmetric and associative, and thus, it can be extend to a N-ary
operator.

The least commitment principle [15] postulates that, given a
set of mass functions compatible with a number of constraints,
the most appropriate one is the least informative. As pointed
out by Denoeux [16], the principle plays a role similar to that
of maximum entropy in probability theory. However, there
are many ways of measuring the information content of belief
functions, which in turn implies a partial order in their space
[17, 18, 19], from the less informative (or less committed) belief
functions to the more informative (or more committed) ones.
Several such partial orders exist. In this paper, we mainly use
the partial ordering called weak inclusion, related to the notion
of b-dominance: a belief function b[2] dominates another one
b[1] if the belief values of b′ are greater than or equal to those
of b[1] for all events A ⊆ Ω

b[1] � b[2] ≡ b[1](A) ≤ b[2](A) ∀A ⊆ Ω. (7)

2.2. Geometric approach

As shown in [20, 21, 22], it is possible to interpret belief
functions as points of a Cartesian space, and study the interplay
of Dempster-Shafer theory objects from a geometrical point of
view.

Given a frame Ω, each belief function b : 2Ω → [0, 1]
is completely specified by its N .

= 2|Ω| − 2 belief values
{b(A), such that ∅ ( A ( Ω}, (as b(∅) = 0, b(Ω) = 1 ∀b)
and can therefore be represented as a vector of RN :

~b = [b(A), ∅ ( A ( Ω]′ (8)

If we denote by bA the categorical belief function [2] assigning
all the mass to a single subset A ⊆ Ω, mbA (A) = 1, mbA (B) = 0
∀B ⊆ Ω, B , A, we can prove that [20, 22] the set of points
of RN which correspond to a belief function, called the belief
space and noted B, coincides with the convex closure1 Cl of
all the vectors representing categorical belief functions: B =

Cl(~bA, ∅ ( A ⊆ Ω). The belief space B is a simplex [22],
and each vector ~b ∈ B representing a belief function b can be
written as a convex sum as:

~b =
∑
∅(A⊆Ω

mb(A)~bA. (9)

The set B1 of all Bayesian belief functions on Ω is the simplex
determined by all basis belief functions associated with single-
tons: B1 = Cl(bω, ω ∈ Ω).

2.3. k-additive belief functions

Definition 1. A k-additive belief function b on Ω (with k ∈ N
and k ≤ |Ω|) is a belief function such that its mass function
m has at least one focal element of cardinality k and none of
cardinality > k.

1Cl(~b1, ..., ~bk) = {~b ∈ B : ~b = α1~b1 + · · · + αk~bk ,
∑

i αi = 1, αi ≥ 0 ∀i}.

Figure 1: The power set of a frame of 4 elements, represented by a lattice, and
the degrees of freedom of several belief functions (in grey). The first figure
the case of a classical belief function. Then, the cases of a 3-additive belief
function and a 2-additive belief function. Finally, a probability distribution (or
Bayesian belief function, or 1-additive belief function.)

According to such a definition, a `-additive belief function with
` < k is strictly speaking not k-additive. Hence, for sake of con-
venience, we define a wider class of belief functions as follows:
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Definition 2. An at most k- additive belief function b on Ω

(with k ∈ N and k ≤ |Ω|) is a belief function such that its mass
function m has no focal element of cardinality > k.

A `-additive belief function with ` < k is not k-additive, but is
at most k- additive. More generally, any belief function on Ω

is at most |Ω|-additive. This will simplify our notations in the
sequel. Clearly:

1. a probability distribution over Ω, or equivalently, a
Bayesian belief function, is a 1-additive belief function,
(see Figure 1);

2. for any belief function b defined over Ω, there is a k ∈
{1, ..., |Ω|}, such that b is k-additive.

We denote by Bk the region of the belief space B associated
with k-additive belief functions. The set of degrees of freedom
of a k-additive belief function is denoted by: Pk(Ω) = {A ⊆
Ω, |A| ≤ k}.

k-additive belief functions were originally introduced in [23].
Their interest is manyfold. Firstly, the number of degrees of
freedom of a k-additive belief function is:

|Pk(Ω)| =
i=k∑
i=1

(
|Ω|

i

)
whereas the number of degrees of freedom of a generic belief
function. is:

|P(Ω)| =
i=Ω∑
i=1

(
|Ω|

i

)
︸   ︷︷   ︸

2|Ω|

= |Pk(Ω)| +
i=|Ω|∑
i=k+1

(
|Ω|

i

)
︸     ︷︷     ︸
>0 if |Ω|>k

.

Hence, for a fixed cardinality |Ω| of the frame, the number of
degrees of freedom of a k-additive belief function is smaller,
making the latter a more compact representation of knowledge.
Thus, from a computational point of view, the use of k-additive
representations is of real interest, as computation cost is one
of the major drawbacks of the theory of belief functions most
frequently criticized in the literature.

As mentioned in [23], another advantage of k-additive be-
lief functions is that they are easier to handle from a perceptive
point of view. Humans find it rather difficult to attach meaning
to focal elements of larger cardinality. Hence, limiting the focal
elements to subsets of Ω with bounded cardinality is a sensible
way of ensuring that the corresponding mathematical represen-
tation of knowledge is intuitive and easy to handle.

Finally, as k-additive belief functions are somehow inter-
mediate objects between belief functions and probabilities (in
terms of their degrees of freedom), they constitute an interesting
trade-off between the full expressive power of belief functions
and the simplicity of interpretation of probability measures (as
1-additive belief functions).

2.4. Geometry of k-additive belief functions
Definition 3. The set of at most k-additive belief functions
dominating a belief function b : 2Ω → [0, 1] is defined as
Bk[b] =

{
b′ ∈ Pk(Ω) : b � b′

}
, or equivalently:

Bk[b] =
{
b′ ∈ Pk(Ω) : b(A) ≤ b′(A) ∀A ⊆ Ω

}
. (10)

Note that, strictly speaking, the space Bk of k-additive belief
functions is not the same as the set of all at most k-additive be-
lief functions. However, for each ` < k the set of `-additive
belief functions is a lower-dimensional face of the simplex as-
sociated with the set of at most k-additive belief functions. In
other words, Bk and {B`}`≤k have the same “volume”.

As it has been proven in [24, 14], that B1[b], the set of dom-
inating probabilities, is a polytope (or convex polyhedron) in
the belief space, whose vertices are probabilities determined by
permutations of the elements of Ω.

Proposition 1. The set B1[b] of all the probability functions
consistent with a belief function b (of mass m) is the polytope

B1[b] = Cl(pρ[b] ∀ρ),

where Cl(.) denotes the convex closure operator and where ρ
is any permutation {ωρ(1), ..., ωρ(|Ω|)} of the singletons of Ω, and
the vertex pρ[b] is the Bayesian belief function such that

pρ[b](ωρ(i)) =
∑

A3ωρ(i); A=ωρ( j) ∀ j<i

m(A). (11)

Each probability function (11) attributes to each singletons ω =

ωρ(i) the mass of all focal elements of b which contains it, but
does not contain the elements which precede ω in the ordered
list {ωρ(1), ..., ωρ(n)} generated by the permutation ρ.

In [25], the authors consider the dominance properties of k-
additive belief functions for any type of capacities [3], define
Bk[b] as the polytope of k-additive belief functions dominating
another belief function, and provide some results to character-
ize it. In this paper on imprecise decisions, we need to consider
similar problems, but we focus on dominance with respect to
belief functions rather than general capacities, and on the deter-
mination of the barycenter of Bk[b] as a feasible generalization
of the pignistic transform to k-additive belief functions, in an
effort to extend the Transferable Belief Model to such compu-
tationally and semantically attractive objects, such as first pro-
posed in [26]. But first, we will recall the bases of the TBM.

3. The TBM and the pignistic level

The Transferable Belief Model [2] is an interpretation of
Shafer’s original formulation of the Theory of Evidence [1] mo-
tivated by decision making rationales. It is characterized by the
following main features.

First, it proposes an axiomatic definition of mass functions
independently from any probabilistic setting, whereas Demp-
ster’s original definition [27] is based on a probabilistic view
of the world, and whereas the alternative Shenoy-Shafer ar-
chitecture [28, 29] description is centered on non-empty ran-
dom sets (a set generalization of the notion of random variables
in probability theory [30]). The bottom line of the TBM is
that probabilities are suitable to model frequentist knowledge,
i.e. knowledge derived from repeated statistical observations.
Thus, probabilities correspond to long-run frequencies. Other
forms of knowledge, instead, should not be described by sub-
jective probabilities (such as those proposed by De Finetti [31],
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Cox and Jaynes [32], or part of the Bayesian community), as
they do not provide a rich enough description. On the con-
trary, belief functions are adapted to quantized such subjective
knowledge. However, for decision making, a probabilistic set-
ting is appropriate as the decision maker is interested in betting
on the outcome which is indeed the most frequent: A long-term
winning strategy is sought.

This leads us to the second significant characteristic of the
TBM, which is divided into two levels. In the first one, called
the credal level, pieces of evidences are assessed, modified,
combined, and so on, until our knowledge state is modeled by a
single belief function. Then, decisions are made at the pignistic
level using the knowledge encoded at the credal level: first the
pignistic transform is applied in order to convert the resulting
belief function into a probability distribution, called the pignis-
tic probability. Then, a MAP (maximum a posteriori) decision
is made based on such pignistic probability to derive the most
appropriate element of Ω.

3.1. Pignistic transform

Definition 4. Given a mass function m : 2Ω → [0, 1], its pig-
nistic probability BetP : Ω→ [0, 1] is defined as:

BetP (ωi) =
∑
A3ωi

m (A)
|A|

∀ωi ∈ Ω (12)

where |A| is the cardinality of the subset A ⊆ Ω. The corre-
sponding MAP decision ω∗ is:

ω∗ = arg max
ωi

[BetP (ωi)].

BetP can be considered as a Bayesian mass function, denoted
by m[S ]

1 (in order to stress the fact that it is a 1-additive belief
function), whose belief values correspond to the Shapley values
(see Equation 13) [33]:

m[S ]
1 (ωi) = BetP (ωi) , m[S ]

1 (A) = 0 if |A| > 1.

Property 1. The belief function b[S ]
1 which corresponds to the

mass function m[S ]
1 is equal to the Shapley valueV [34]:

b[S ]
1 (B) =

∑
{ωi}∈B

m[S ]({ωi}) =
∑
A⊆Ω

m(A) · |A ∩ B|
|A|

= V(B) ∀B ⊆ Ω.

(13)

The Shapley value is a capacity used to determine how to share
the profit (or loss) resulting on a bet booked by a coalition of
gamblers [33]. We need to be careful, however, with the in-
terpretation of BetP as a belief function m[S ]

1 , as the pignistic
transform (12) does not commute with Dempster’s rule (5):

Property 2. The pignistic transform does not compute with
Dempster’s rule.

3.2. Axiomatic justification of the pignistic transform
While the pignistic level’s probabilistic setting for decision

making was fully justified, in Smets’ view, by the notion of
long-run winning strategy, the nature of the mapping between
belief functions in the credal level and probability distributions
in the pignistic level was originally based on the Principle of
Insufficient Reason (PIR) proposed by Bernoulli, Laplace, and
Keynes [9].

Definition 5. The Principle of Insufficient Reason states that
“if there is no known reason for predicating of our subject one
rather than another of several alternatives, then relatively to
such knowledge the assertions of each of these alternatives have
an equal probability”.

As understood in a probabilistic understanding of DST, the
mass m(A) associated with a non-singleton event A ⊆ Ω can
be understood as a “floating probability mass” which can not
be attached to any particular singleton event ωi ∈ A, i ≤ |Ω| be-
cause of the lack of precision of the (multi-valued) operator that
quantify our knowledge via the mass function. Then, according
to the PIR, when considering the restriction of the mass func-
tion to the frame induced by the event A, it is wise to assume
equiprobability amongst the singleton events ωi ∈ A,∀i ≤ |Ω|.
This yields the pignistic transform (12).

Later on, however, Smets [35, 36, 6, 34] advocated that the
PIR could not justify by itself the uniqueness of the pignistic
transform, and proposed a justification based on a number of
axioms.

Definition 6. The five rationality arguments which justify the
existence and unicity of the pignsitic transform are:

1. Linearity: The pignistic transform must commute with the
convex closure operator.

2. Projectivity: The pignistic tranform of a Bayesian belief
function is (equivalent to) the belief function itself.

3. Efficiency: A bet on the whole frame is bound to win with
a certain probability.

4. Anonymity: The result of the pignistic tranform does not
depend on permutations of the elements of Ω.

5. False event: Any false event is bounded to have a zero
pignistic probability.

In [35] Smets refuted a Dutch Book which had been proposed
against the pignistic transform [37], [38]. A Dutch Book is a
scenario of bets and corresponding offered odds which guaran-
tees a profit (or a loss) regardless the results on the experiments.
Of course, the existence of such a Dutch Book in the TBM
framework (whereas for the same scenario it does not exist in
the probabilistic framework) would have been a proof of the
lack of coherence of the pignistic transform. Even though this
Dutch Book objection was indeed discarded, Smets admitted
that a proof that his pignistic transform resists to all Diachronic
Dutch Books in general had not been given [35].

The commutativity of the pignistic transform with respect
to convex closure (“linearity”) is of great interest. Conversely,
Property 2, stating that the pignistic transform does not compute
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with Dempster’s rule, is a major arguments against the pignistic
transform: In [39], the commutation with the Dempster’s rule is
said to be far more important than the linearity argument. Thus,
another set of axioms is proposed to defined the behavior of a
transformation of a belief function onto a probability [39]. Of
course, these two sets of axioms are not compatible and lead to
different results. But, as pointed out by Shafer [32], the word
“axiom” has two different meaning: It can either be an asser-
tion, the truth of which cannot be established nor denied, as in
Euclid’s geometry, or it can be an assumption the consequences
of which are later explored. This may explain the ongoing dis-
cussions around the axiomatic justification of probability trans-
formations.

The original intuition driven by the PIR, however, retains its
interest as confirmed by the following geometrical property of
the pignistic transform.

Property 3. Let b be a belief function, and let us consider the
set B1[b] of probabilities dominating b. The pignistic trans-
form m[S ]

1 of b is the center of mass of B1[b] in the belief space.

A complete proof of this well known result [14, 40, 24] being
hard to find, we presented one in Appendix A.1. This version
of the demonstration is interesting, as it is based on techniques
that will be required in the analysis of the barycenter of the set
of dominating k-additive belief functions.

3.3. Other probability transformations and generalizations of
the pignistic transform

Other probability transforms, not necessarily in relation to
the TBM, have been proposed along the years. Here is a short
review of them:

The only transform which is as popular as the pignistic prob-
ability is defined by normalizing the plausibility values of sin-
gletons in order for them to sum up to 1 over Ω:

m[RelPl](ωi) =
pl(ωi)∑

ω j∈Ω

pl(ω j)
=

pl(ωi)∑
A⊆Ω

m(A) · |A|
∀ωi ∈ Ω.

(14)
This transform is really interesting as it is both a computation-
ally efficient approximation of a belief function and useful for
decision making. It was first introduced by Voorbraak in 1989
[41] as a normalization of the commonality values of the single-
tons,but its use for decision making came earlier as the problem
of finding the most plausible configuration was previously ad-
dressed in [28, 42]. In spite of its lack of dominating prop-
erties, this transform has been studied by various authors, and
possessed as a consequence a number of different names in the
literature, such as: Bayesian approximation [41], proportional
plausibility probability [43], plausibility transform [39], cau-
tious probabilistic transform [8], relative plausibility of single-
ton [44, 45, 46].

Similarly, it is possible to derive another transform by nor-
malizing the belief of singletons. As long as ∃ωi ∈ Ω such that

m(ωi) , 0, it is defined by:

m[RelBel](ωi) =
bel(ωi)∑

ω j∈Ω

bel(ω j)
∀ωi ∈ Ω.

Using this transformation amounts to dropping the focal ele-
ments with cardinality greater than or equal to 2. Its result has
several interesting properties in terms of both decision making
and computational complexity. In [43] (2001), Sudano briefly
introduced it as the proportional belief probability. Then, it
was introduced and extensively studied [8] (2006) by Daniel
as the disjunctive probabilistic transform. In the latter, Daniel
also briefly discussed the interactions of several transforms
with belief and plausibility functions from a geometric point
of view. Cuzzolin extensively studied semantics and properties
of this transform, that he called the relative belief of singletons
[47, 48], proving in particular that (in analogy to the plausibility
transform (14)) it commutes with Dempster’s sum (of plausibil-
ity functions), and it perfectly represents plausibility functions
when combined with Bayesian belief functions.

In a similar way, Cuzzolin derived from geometric considera-
tions the orthogonal projection and the intersection probability
[44]. The orthogonal projection

π[b](ωi) =
∑

A⊇{ωi}

m(A)
(1 + |Ac|21−|A|

|Ω|

)
+

∑
A2{ωi}

m(A)
(1 − |A|21−|A|

|Ω|

)
(15)

is particularly interesting as it meets Smets’ linearity axiom
(Axiom 1), showing that the pignistic transform is only one of
a family of transformations commuting with convex or affine
combination, which Cuzzolin called affine family [46].

The probability deficiency proportional plausibilities, was
very briefly introduced by Sudano [43] and shares important
similarities with Cuzzolin’s intersection probability. Both have
the following structure:

bel(ωi) +

1 − ∑
ω j∈Ω

bel(ω j)

 · ∆(ωi)∑
ω j∈Ω

∆(ω j)
, ∀ωi ∈ ΩX

with ∆ = pl for Sudano’s transform, and ∆ = pl − m for Cuz-
zolin’s.
Daniel [8] and Sudano [43] proposed several other transforms
[49]. However, to our knowledge (apart from a few preliminary
works of ours [50, 26]), there are only three generalizations
of the pignistic transform, none of them generalizing to the k-
additive case so interesting for imprecise decision.

The first one, presented by Daniel [8], is the weighted pignis-
tic transform. The idea is to use a mass function m[W] to weight
the pignistic transform according to some prior knowledge (en-
coded in m[W]). ∀ωi ∈ Ω:

m[WS ]
X (ωi) =

∑
ωi∈A
A⊆Ω

m[W](ωi)∑
B∈A m[W](B)

m(A)
|A|

.

Baroni’s [51] considers the problem of defining a pignistic
transform which is not only valid for belief functions, but also
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for other types of imprecise probabilities, such as 2-monotone
capacities. Finally, Dezert’s generalized pignistic transforma-
tion [52] refers in fact to a complete different framework (the
Dezert-Smarandache Theory of Plausible and Paradoxical Rea-
soning [53]), which has the same power of expression as the
Dempster-Shafer theory [54].

4. Imprecise decisions via k-additive generalizations

As we have seen, a significant amount of work has been con-
ducted around the pignistic transform. Nevertheless, to our
knowledge, no k-additive generalization has so far been pro-
posed, notwithstanding the interest such generalization would
bear in the context of imprecise decision.

Here, as the prime goal of the pignistic transform is to pro-
vide an efficient framework for decision making, we first ex-
plain how k-additive belief functions can actually be used to
implement imprecise decisions, and we stress the interest of
imprecise decisions on different examples. Later we focus on
alternative ways of deriving such a generalization.

4.1. The interest of imprecise decisions
Classically, any decision setting is made of a finite number

of choices (or hypotheses), fitted with several estimators such
as posterior probabilities, profits or losses. A decision maker
promotes a single choice and discard the others, according to a
specific strategy.

This classical framework is not always able to describe the
decision making behavior of a human expert, as a human be-
ing is able, when necessary, to promote an entire set of disjoint
hypotheses. Hence, as illustrated in [55], during a medical diag-
nosis, physicians need to discriminate all the potential diseases
of a patient but the single one which really is the source of the
illness. However, if symptoms do not concur, or if the disease
is at an early stage, the physician is only capable of discarding
a huge proportion of all the possible diseases, while still con-
sidering a few of them. In such a context, a decision making
process can be seen as a narrowing of the set of hypotheses,
rather than the selection of a specific one. If in this narrowing
process all the hypotheses are discarded but one, we say that the
decision is precise (or classical, or hard). If several hypotheses
remain, the decision is imprecise. We call the cardinality of the
decision the number of hypotheses that are not discarded.

Naturally, the cardinality of the imprecise decision should
strongly depend on the situation and on the amount of knowl-
edge, and should not depend on a predefined strategy (such as,
for instance, keeping the N best hypotheses). This is well il-
lustrated by the diagnosis example: The physician ought to be
as as precise as possible, while preferring imprecision over er-
ror. The trade-off between precision and error means that, after
having considered all the symptoms, the physician will have to
decide between options such as “flu”, “flu or bronchitis”, “bron-
chitis or cancer or pneumothorax”, etc. Finaly, the decision
maker is led to compare all groups of hypotheses regardless to
their cardinality, and choose one of these groups, the cardinality
of which will only depend on the imprecision of the knowledge
of the decision maker, and not on a predefined strategy.

When implementing such behavior two major difficulties oc-
cur. On one side we need to guarantee that the decision will not
be too imprecise (what a patient would think about an physician
who hesitates among two hundred different diagnoses?). To do
so, we need to discard sets of hypotheses whose cardinality is
above a maximum acceptable value k. Hence, k-additive belief
functions seem to be a suitable tool for such a modeling. On
the other hand, we need to provide a methodology to compare
the respective significance of subsets of different cardinalities,
so that the agent will not always promote the most precise or,
on the contrary, the most imprecise decision.

To face this issue, ad-hoc methods are typically used. For
instance, it is possible to consider compound hypotheses and
practice hypothesis testing as in classical statistical theory. In
such approaches the size of the selected compound hypothesis
is related to the p-value which is expected (the probabaility of
the null hypothesis). In a more subjective setting, it is possible
to associate a cost with each decision and minimize such as cost
function on the power set of Ω. Finally, it is possible to simply
sort the individual decision outcomes in descending order, and
select the first N hypotheses so that their total probability value
is above a certain pre-defined threshold, such as it is classically
done in handwritting recognition [56].

The goal of this paper is to provide an imprecise decision
approach based on the philosophy of Dempster-Shafer theory
(in its TBM interpretation) which fulfils the requirements for
such kind of decision making scenarios, i.e., that allow for the
comparison of the relative interest of sets of hypotheses of dif-
ferent cardinalities. Practically, the example below illustrates
how imprecise decision can be cast in the TBM framework.

4.2. Example: Imprecise trajectories

Let us consider the position of a robot in a state-space so that
its behavior is Markovian in time: the location of the robot at
time t + 1 is independent from its past trajectory conditionally
to the present location at time t [57].

The robot’s future location only depends on (1) the current
location, (2) an unknown random process that eventually drives
the global motion of the robot, and (3) some bias due to noise or
hidden variables. All the possible trajectories along a discrete
time scale can be modeled by a lattice representing the cross
product of (discrete) state-space and time. A particular trajec-
tory is just a path in this lattice (Figure 2). Suppose that, at each
time instant t, sensors provide distinct pieces of information to
the robot which are processed in the TBM framework: they are
merged (at the credal level) and the current state of the robot is
inferred by a decision process that occurs at the pignistic level.
Several stances are possible:

1. The classical pignistic transform is used. Unfortunately, as
the sensors are error-prone, the inferred state is not always
the right one, and the estimated trajectory is composed of
correct and incorrect states with respect to the ground-truth
(Fig. 2). Of course, the TBM provides tools to filter such
trajectories [58, 59, 60] and, in spite of an additional com-
putational cost, they are really efficient.
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Figure 2: The space-time lattice: the horizontal axis represents the time iter-
ations, and the vertical axis, the states. The real trajectory (ground truth) is
represented by the black line, and the inferred states are presented by black
dots linked by the grey line. The real and inferred trajectories differ, as few
mistakes are made in the decision process.

2. Betting on compound hypotheses (knowing that, the more
numerous they are, the smaller the chance of making a
mistake) is safer, but the risk is that no real decision is
eventually made and the inferred trajectory is too impre-
cise (Fig. 3).

3. A tradeoff between these two extreme stances is to auto-
matically tune the cardinality of the decision: When the
decision is difficult to make a compound hypothesis is se-
lected to avoid mistakes, while otherwise a singleton hy-
pothesis is awarded to ensure accuracy (Fig. 4).

Figure 3: In a similar manner to figure 2, the real trajectory (ground truth) is
compared to the inferred one. As a matter of fact, no mistake is made on the
inferred trajectory, but, as a drawback, it is really imprecise.

The first stance corresponds to classical decision making. The
second stance allows for imprecise decisions: such a decision
process can indeed be useful, and as we have mentioned several
manners of implementing it exist, in both belief and probability
formalisms. The final option corresponds to situations where
it is possible to bet on compound hypotheses, but in a different
manner, as the cardinality of the decision is not fixed. Figures 2,
3 and 4 illustrate the kind of path obtained in the three scenar-
ios. Clearly the last approach is rather interesting, as it proposes
a trade-off between minimizing the risk of making an error and
supporting a decision as precise as possible. This latter pre-
cisely corresponds to the type of decision one expect to define
by generalizing the pignistic transform.

4.3. Two possible generalizations
From the discussion of Section 3.2 it emerges that there are

at least two ways of generalizing the pignistic transform to k-
additive belief functions. Of course additional generalizations

Figure 4: As in Figure 2, the real trajectory (ground truth) is compared to the
inferred one. A trade-off between risky bets (a singleton state is assessed) and
imprecise decisions (circled by a dot line) allows limiting the number of mistake
while remaining quite precise.

could in principle exist, but a strong case can be made in favor
of the following ones.

The first option is to generalize the manner in which the pig-
nistic transform redistributes the mass of each focal element of
the frame to atoms of Ω. Once understood why this leads to
a probability distribution suitable for decision making, we can
extend it to situations in which the mass is redistributed from
subsets of cardinality > k to subsets of cardinality ≤ k. In the
rest of the paper, we will call this generalization asymmetric,
as it does not consider all the vertice of Bk[b] with the same
weight.

Another option is to consider the geometrical feature of the
pignistic transform as the barycenter of the polytope of domi-
nating probabilities and to define the barycenter of the polytope
of dominating k-additive belief functions, whatever the value of
k. In the sequel we will call this the geometric generalization of
the pignistic transform.

These two different generalizations lead to different out-
comes, and have advantages and drawbacks.

5. The asymmetric generalization

As we have seen in Section 3.2, besides the proposed ax-
iomatic justification, the Principle of Insufficient Reason plays
an important role in the justification of the pignistic transform.
The latter is a redistribution process of mass assignments in
which the mass m(A) associated with each A ⊆ Ω is equally
shared by its singleton elements ωi ∈ Ω ∩ A. Thus, as stated by
the PIR, m(A) is divided into |A| parts of which each ωi ∈ Ω∩A
receives one:

m(ωi)←
m(A)
|A|

∀ωi ∈ Ω.

Any generalization to k-additive belief functions will have to
redistribute the mass of subsets of cardinality > k to subsets of
cardinality ≤ k. As a case study, let us consider A such that
|A| > k, and B and C two subsets of A of cardinality ≤ k, such
that:

|B| = n × |C|

with n ∈ N and n < k (for instance, C is a singleton, whereas
|B| = n). In absence of any additional knowledge, the PIR states
that there is no reason to privilege any of the singletons in B
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or C with respect to the others. Then, it is natural to expect
that, in a generalized redistribution process, B receives a mass
from A which is n times the mass that C receives from A, as
all the singletons they are composed of are equally believed in.
In other words, the mass m(A) has to be divided into N parts,
where

N =

k∑
j=1

(
|A|
j

)
· j =

k∑
j=1

|A|!
( j − 1)!(|A| − j)!

is the total cardinality of the subsets of A of size not greater than
k.

Finally, each subset D of A with a cardinality ≤ k will receive
exactly |D| parts from A. For instance, if A = {ω1, ω2, ω3, ω4},
and the mass of A is redistributed in a 2-additive pignistic trans-
form, m(A) is divided intoN = 4 + 2× 6 = 16 parts, and any of
the 4 singletons will inherits 1 parts, whereas the 6 subsets of 2
elements will receive 2 parts each (i.e. a share proportional to
their cardinality).

Formally, let us consider a hesitation threshold of value k ≤
|Ω| defined according to the problem under consideration, and
a mass function m.

Definition 7. Given a belief function b with mass m : 2Ω →

[0, 1], the result of the asymmetric transform, denoted by m[A]
k ,

is defined as the k-additive belief function induced by the mass
assignment

m[A]
k (B) = m(B) +

∑
A⊃B, A⊆Ω, |A|>k

m(A) · |B|
N(|A|, k)

(16)

∀B ⊆ Ω such that |B| ≤ k, m[A]
k (B) = 0 ∀B ⊆ Ω such that

|B| > k, where

N(|A|, k) =

k∑
`=1

(
|A|
`

)
· ` =

k∑
`=1

|A|!
(` − 1)!(|A| − `)!

is the average cardinality of the subsets of A of size at most k.

This transformation was first empirically introduced, with-
out any theoretical justification, as a means to perform classifi-
cation into imprecise clusters for an American Sign Language
recognition task in videos [10, 61]. The good classification
rates demonstrated there support the interest of imprecise de-
cision making in pattern recognition, as well as the validity of
the asymmetric k-additive pignistic transform.

6. The geometric generalization

A different generalization of the pignistic transform to k-
additive belief functions emerges when we focus on its geo-
metric property of being the barycenter of the set of dominating
probabilities. Property 3 states that the pignistic transform of
b corresponds to B1[b], the barycenter of B1[b]. Quite obvi-
ously, the asymmetric generalization does not meet with this
property. Indeed, the redistribution process which defines it in
not “fair”, as subsets with greater cardinality receives a larger
share of mass than subsets with lower cardinality. On the other

hand, the center of mass of a polytope in the belief space is not
defined according to any weighting, including the cardinality of
A. No additional support is given to subsets of greater cardinal-
ity with respect to lower cardinality ones. Thus, a k-additive
belief function meeting the trivial generalization of Property 3
would constitute a different generalization of the pignistic trans-
form. Then, let us therefore characterize the barycenter Bk[b]
of the polytope Bk[b].

6.1. The polytope of dominating belief functions

Proposition 1 states that the polytope of dominating probabil-
ities (1-additive belief functions) B1[b] has vertices associated
with permutations of the list of element of Ω. This suggests that
the set of dominating k-additive belief functions could have a
similar form, with each vertex associated with a permutation of
the list of focal elements of size smaller than or equal to k.

Conjecture 1. Given a belief function b : P(Ω) → [0, 1], with
mass function m, the region Bk[b] of all the k-additive belief
functions on Ω which dominate b according to order relation
(7) is the polytope:

Bk[b] = Cl(bρ[b] ∀ρ),

where ρ is any permutation {Aρ(1), ..., Aρ(|Pk(Ω)|)} of the focal ele-
ments of Ω of size at most k (Pk(Ω)), and the vertex bρ[b] is the
k-additive belief function with the following mass function:

mρ[b](Aρ(i)) =
∑

B⊇Aρ(i); B2Aρ( j) ∀ j<i

m(A). (17)

Moreover, each actual vertex bρ[b] of Bk[b] is associated with
the same number of permutations of Pk(Ω).

This allows us to deal with the computation of the center of
mass of Bk[b] in a straightforward manner.

Theorem 1. If Conjecture 1 holds, given a belief function b :
P(Ω) → [0, 1] of mass function m, the center of mass Bk[b] of
the simplex Bk[b] of k-additive belief functions dominating b is
given by the mass assignment:

m[B]
k (A) =


∑
B⊇A

m(B)
|Pk(B)|

, ∀A ∈ Pk(Ω)

0 A < Pk(Ω),
(18)

where |Pk(B)| is the number of subsets of B of size not greater
than k.

Note that |Pk(B)| =
∑k
`=1

(
|B|
`

)
, N(|B|, k) =

∑k
`=1

(
|B|
`

)
· `. The

proof can be found in Appendix A.3. It follows the classical
one given for the barycenter B1[b] = BetP[b] of the set of
dominating Bayesian belief functions (Appendix A.1).

6.2. A generalization of the pignistic transform induced by the
barycenter of dominating k-additive belief functions

As expected, for k = 1, the expression (18) reduces to the
pignistic probability distribution (12), since |P1(B)| = |B|.
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Nonetheless, we cannot rigorously consider it a generaliza-
tion of the pignistic transform according to the axiomatic Def-
inition 6, as it does not fulfill the axiom of Projectivity2. One
would expect the k-additive pignistic transform to reduce to the
identity transformation when applied to an already k-additive
belief function bk. Unfortunately, the barycenter of the at most
k-additive belief functions dominating such a bk cannot be bk.
This can be pictured in the binary case of Figure A.5, but here is
a more illustrative example on the ternary case: Let us consider
Ω = {ω1, ω2, ω3} and m the mass function on Ω:

m({ω1, ω2}) = 0.2
m(ω1) = 0.3
m(ω2) = 0.5

and m(.) = 0 otherwise. The barycenter of the set of at most
2-additive belief functions dominating m is given by:

m[B]
2 ({ω1, ω2}) = 0.6667

m[B]
2 (ω1) = 0.3667

m[B]
2 (ω2) = 0.5667

and m[B]
2 (.) = 0 otherwise, whereas we would expect m[B]

2 = m.
Hence, (18) is not a projective transform. Nonetheless, the

close relationship between the geometric barycenter of Theo-
rem 1 and the pignistic transform is enticing, and just a minor
modification of Equation (18) is required to obtain an interest-
ing k-additive generalization which fulfills Smets’ axioms: It
is sufficient to restrict the distribution process to mass assign-
ments to focal elements of cardinality strictly greater than k.

Definition 8. Given an arbitrary belief function b : P(Ω) →
[0, 1], its geometric k-additive pignistic transform is defined as
the k-additive belief function with mass assignment:

m[G]
k (A) =


m(A) +

∑
B⊃A,
B⊆Ω,
|B|>k

m(B)
|Pk(B)|

∀A ⊆ Ω : |A| ≤ k

0 ∀A ⊆ Ω : |A| > k.

(19)

The pignistic transform corresponds to a redistribution pro-
cess in which the mass of each focal element is re-assigned on
an equal basis among its elements (size 1 subsets). Equation
(19) represents an analogous redistribution process in which the
mass of each focal elements is re-assigned to each subset of size
` ≤ k on an equal basis.

6.3. Geometric interpretation

A simple geometric interpretation can be provided for the
geometric transform of Definition 8 as well, in terms of the
barycenter (18) of the polytope of k-additive dominating belief
functions, and the k-additive part of the original b.f.

2Another option would be to generalize the Projectivity axiom itself in a
sensible way. We will not pursuit that line of reasoning in the present paper.

Consider a belief function b whose order of additivity is
greater than k, denote by ~b the corresponding vector in the be-
lief space. By Equation (9) it is possible to rewrite ~b as a sum
of two components:

~b =
∑
|A|≤k

mb(A)~bA +
∑
|A|>k

mb(A)~bA = ~b≤k + ~b≤k.

Note that the vector ~b≤k < Bk does not represent a valid belief
function, as it is not normalized: ||~b≤k ||1 < 1. Nevertheless,
~b≤k

||~b≤k ||1
∈ Bk. Similarly,

~b>k

||~b>k ||1
∈ B \ Bk.

Let us then consider m̃[B]
k = Bk

[
~b>k

||~b>k ||1

]
, the barycenter of the

the set of k-additive belief functions dominating ~b>k, normal-
ized to be a valid belief function. We have, by Theorem 1:

m̃[B]
k (A) =


∑
B⊇A

m̃(B)
|Pk(B)|

, ∀A ∈ Pk(Ω)

0 A < Pk(Ω),
(20)

=


1

||~b>k ||1

·
∑
B⊃A,
B⊆Ω,
|B|>k

m(B)
|Pk(B)|

, ∀A ⊆ Ω : |A| ≤ k

0 ∀A ⊆ Ω : |A| > k.

(21)

where, m̃ and m stand, respectively, for the mass functions of
~b>k

||~b>k ||1
, and of ~b.

By comparing Equations (19) and (20) it follows that, after de-
noting by mk the mass function of

~b≤k

||~b≤k ||1
,

m[G]
k = ||~b≤k ||1 · mk + ||~b>k ||1 · m̃

[B]
k .

As ||~b≤k ||1 + ||~b>k ||1 = 1, the latter amounts to a linear combina-
tion of the k-additive part of b (i.e. b≤k) and of the barycenter of
k-additive belief functions dominating the remaining part of b
(i.e. b− b≤k), whose coefficient is the proportion of mass which
is assigned to a focal element of cardinality lower than or equal
to k.
In the next section, we provide some mathematical properties
of the proposed asymmetric and geometric k-additive pignis-
tic transforms. Moreover, we establish their coherence with
Smets’ axioms, making them eligible as k-additive generaliza-
tions of the pignistic transform.

7. Properties of the sets of pignistic k-additive transforms

7.1. Dominance properties

Clearly, for any K-additive belief function b (note that any
b is at least |Ω|-additive) it is possible to define K − 1 pairs of
k-additive belief functions {b[A]

k , b[G]
k } with 1 ≤ k ≤ K − 1

by applying the asymmetric and geometric k-additive pignistic
transforms for all the values of k up to K.

Definition 9. Let b be a K-additive belief function. The two
sets of asymmetric and geometric at most K-additive pignistic
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belief functions of b are defined as:

A[b] =
{
b[S ], b[A]

2 , · · · , b[A]
K−1, b

}
, (22)

G[b] =
{
b[S ], b[G]

2 , · · · , b[G]
K−1, b

}
. (23)

The next proposotion shows that applying a sequence of pig-
nistic k-additive transforms with different values of hesitation
threshold k is equivalent to applying directly the transform with
the smallest k.

Proposition 2. Let b be a k-additive belief function and
k1, k2 < k. We have that(

b[A]
k1

)[A]

k2
= b[A]

min(k1,k2),
(
b[G]

k1

)[G]

k2
= b[G]

min(k1,k2).

The proof is in Appendix A.4. As a consequence, it is possible
to compute in a recursive manner all the elements ofA[b] (resp.
G[b]) using decreasing values of the hesitation threshold. Now,
let us study the dominating properties ofA[b] and of G[b].

Proposition 3. Let b be a K-additive belief function, and let
k < K. Then

b � b[A]
k , b � b[G]

k ,

or, in other words, both the asymmetric and geometric k-
additive pignistic transforms of b dominate b.

The proof can be found in Appendix A.5. All these proposi-
tions are useful to prove several interesting properties, which
are summarized below:

Property 4. Let b be a K-additive belief function. The sets
A[b] and G[b] of pignistic k-additive belief functions, 1 ≤ k ≤
K, have the following properties:

1. if k = K both transforms are idle: b = b[A]
k = b[G]

k ;
2. if k = 1, the result corresponds to the Shapley value:

b[A]
1 = b[G]

1 = b[S ];
3. ∀k ≤ K, b[A]

k and b[G]
k are k-additive belief functions which

are uniquely defined, and which dominate b;
4. ∀k ≤ K, A[b[A]

k ] ⊆ A[b], and G[b[G]
k ] ⊆ G[b];

5. ∀k2 < k1 ≤ K, b[A]
k1
� b[A]

k2
and b[G]

k1
� b[G]

k2

6. We have:

b = b[A]
K � b[A]

K−1 � · · · � b[A]
2 � b[A]

1 = b[S ]

and

b = b[G]
K � b[G]

K−1 � · · · � b[G]
2 � b[G]

1 = b[S ];

The proofs are given in Appendix A.6.

7.2. Coherence with Smets’ axioms
Most importantly, we now consider the coherence of the

two proposed generalizations of the pignistic transform with re-
spects to the 5 rationale of Smets [35, 36, 6, 34].

Theorem 2. Both asymmetric and geometric k-additive pig-
nistic transforms fulfil Smets’ rationality arguments. In other
words:

1. Linearity: Asymmetric and geometric k-additive pignistic
transforms commute with the convex closure operator.

2. Projectivity: Asymmetric and geometric k-additive pignis-
tic transforms are idle for all at least k-additive belief func-
tions.

3. Efficiency: A bet on the entire decision space is bound to
win with a certain probability.

4. Anonimity: The outcome of both asymmetric and geomet-
ric k-additive pignistic transforms is not sensitive to per-
mutations of the elements of Ω.

5. False Event: Asymmetric and geometric k-additive pignis-
tic transforms assign nil mass to every false event.

A proof of this theorem is given in Appendix A.7. This theo-
rem definitely shows that the asymmetric and the geometric k-
additive pignistic transforms are valid generalizations of Smets’
pignistic transform.

8. Evaluation on a decision making context

As interesting as their formal properties are, the rationale
of the proposed k-additive pignistic transforms is their poten-
tial application to imprecise decision making. In this last part
of the paper we therefore compare them in a real world sce-
nario. First, we present a framework to evaluate the interest
of any imprecise decision method with respect to classical de-
cision making. Second, we provide some basic background on
handwriting recognition and we explain how imprecise decision
are crucial in this field. Finally, we apply the asymmetric and
geometric k-additive pignistic transforms on real handwriting
datasets, and we compare them together and with the classical
pignsitic transform.

8.1. How to evaluate imprecise decisions ?

First of all, we need to work out a sensible way of evaluate
imprecise decisions. In [62], a method is indeed proposed to
evaluate and compare the efficiency of precise and imprecise
decision algorithms, based on the following idea.

A dataset is considered for a classification task, and for each
item of the dataset, a decision is made on the class to which
this item should belong, according to the different decision pro-
cesses to compare. By performing several classification tasks
in exactly the same setting while changing the decision process,
the variations of the accuracy rate is only due to the efficacy of
the decision process itself. The highest the accuracy rates, the
more effective the decision rule. The problem reduces then to
finding a measure of accuracy which allow comparisons of de-
cision rules whose outcomes do not necessarily have the same
cardinality.

In a classical setting, accuracy can be defined as follows. For
each item in the dataset the potential classes {1, ...,C} are ranked
according to some confidence measure. The first N such classes
are selected, so that for each item in the dataset a decision of
constant cardinality N is made, and the accuracy Acc(N) of the
decision is the fraction of items for which the correct class is
one of the first N. If N = 1, we have a precise decision. When
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decision outcomes of different cardinalities are allowed, as in
imprecise decision making, the notion of mean cardinality be-
comes relevant.

Let us assume that the dataset contains 100 items, and that
a decision of cardinality 1 is made for 60 of them, whilst a
decision of cardinality 2 is made for the remaining 40. The
mean cardinality of the decision process is 60+2×40

100 = 1.4, a
value which belongs to the set of rational numbers Q (contrarily
to the classical case). Formally, if T is the size of the dataset and
α j, j > 0 represents the number of items for which a decision of
cardinality j is made, then the mean cardinality of the decision
is defined as:

Q =

∑
j j · α j

T
.

The classical definition of accuracy Acc(N) can be reformu-
lated using the Kronecker symbol: δN

i = 1 if and only if the
true class of the i-th item of the dataset is ranked in the first N
classes proposed by the classifier, whilst δN

i = 0 otherwise:

Acc(N) =

∑T
i=1 δ

N
i

T
=

∑T
i=1 δ

N
i × N

T × N
=

∑T
i=1 δ

N
i × N∑T

i=1 δ
C
i × N

as T =
∑T

i=1 δ
C
i since δC

i = 1 ∀i.
Let Li, be the list of proposed classes for item i, |Li| being

the length of this list. A more general definition of accuracy is
therefore

Acc(Q) =

∑T
i=1 δ

|Li |

i × |Li|∑T
i=1 δ

T
i × |Li|

=

∑
j

j · β j∑
j

j · α j

where |Li| = Q is the mean cardinality of the decision, α j is the
number of items for which a decision of cardinality j is made
(correct or not), while β j is the number of items for which a
decision of cardinality j is correctly made. In our toy example,
if among the 60 precise decisions, 50 are correct, and among
the 40 imprecise decisions, 30 are correct, then the accuracy is:

Acc(1.4) =
50 × 1 + 30 × 2
60 × 1 + 40 × 2

=
110
140

= 78.6%

To compare the accuracy Acc(Q) of an imprecise classifier with
the accuracy Acc(N) of a precise one, we can simply consider
the accuracy of the latter for the lower bQc and upper dQe inte-
ger approximations of Q, from which the linear interpolation

iAcc(Q) = (dQe − Q) · Acc(bQc) + (Q − bQc) · Acc(dQe)

provides a good indicator. For instance, if the reference precise
algorithm has Acc(1) = 80% and Acc(2) = 90%, then, Acc(1.7)
can be compared to iAcc(1.7) = 87%.

It is also useful to consider the set of partial accuracy rates
pAcc( j) = β j/α j for all ranks j, i.e., the accuracy rates com-
puted on each set of items for which a decision of cardinality j
is made. If an imprecise decision process always provides better
pAcc( j)’s than a second one for decisions of small cardinality
j, it is arguably robust: In such a case, it is likely that such pre-
cise, narrow decisions are less frequent in the first process than
in the second, as the first decision strategy focuses only when
the decision is robust enough.

8.2. Basis of handwritting recognition
Classically, handwritting recognition algorithms are based on

the following structure :

1. An image processing module segments the pen mark from
the background and a connectivity analysis provides the
locations of the spaces between the letters, in order to ex-
tract each word separately.

2. Each word is processed to extract meaningfull descriptors
of the shape of the penmark, and these features are used as
variable inputs for a classification task (where the classes
corresponds to the words of a lexicon). The classifier out-
put is classically made of a list of several words, ordered
by decreasing interest (most of the time, the interest of
each word is quantized by a probability). Eventually, to
improve the word-level recognition, a DST-based combi-
nation of several classifiers can be used instead of a single
classifier [11].

3. Finally, a linguistic layer is used, so that grammar or syn-
taxic rules can be used to eraze some mistake locally pro-
duced by the isolated word recognition module.

Obviously, the longer the lists from the classifier are, the larger
the chances of having the right classes within the lists. Hence,
to make sure that the minimum number of errors occur, clas-
sicaly, rather long lists are used. Hence, for instance, when
recognizing a short sentence of 8 words, with lists of 10 propo-
sitions for each word, the linguistic layer has to compare 810

potential sentences. Among those words, it is likely to assume
that at least, one or two of them are rather simple to recognize
(a short list of 2 or 3 items is safe enough), which drastically
reduce the combinatory of the sentences. This illustates well
the interest of imprecise decisions at step 2. As the cardinality
of the decision is adaptative, it is possible to have more propo-
sitions on words which are difficult to recognize, whereas less
are given for words which are more easily processed.

8.3. Application to handwriting recognition
Equipped with these measures of accuracy, let us com-

pare precise decisions (as provided by the classical pignis-
tic transform) and two imprecise decision strategies associ-
ated with the two proposed generalizations to k-additive be-
lief functions in a classification task which concerns handwrit-
ten word recognition on three publicly available databases: the
IFN/ENIT benchmark dataset of Arabic words and the RIMES
and IRONOFF databases of Latin words. We adopt here the
protocol published in [62], with the crucial assistance of its au-
thors. We provide therefore only a brief description of the ex-
perimental setting, while we invite readers interested in more
details to refer to [62].

The IFN/ENIT [63] contains 32,492 handwritten words (Ara-
bic symbols) of 946 Tunisian town/villages names written by
411 different writers. Four different sets (a, b, c, d) are used
for training and 3000 word images from set (e) for testing. The
RIMES database [64] is composed of isolated handwritten word
snippets extracted from handwritten letters (latin symbols). In
our experiments, 36000 snippets of words are used to train dif-
ferent HMM classifiers and 3000 words are used in the test.
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IRONOFF [65] is both an on-line and off-line dataset. The
sub-dataset IRONOFF-Chèque only contains a small lexicon of
roughly 30 words used on French checks (numbers, currencies,
etc.). 7956 words are used for training and 3987 are used for
testing. As the absolute accuracy of each classifier is not an is-

Datasets Acc(1) Acc(2) Acc(3) Acc(4)

RIMES 54.10 66.40 72.13 75.87
IFN/ENIT 73.60 79.77 82.83 84.60
IRONOFF 85.65 91.51 93.84 95.55

Table 1: Accuracy rates for the RIMES, IFN/ENIT and IRONOFF datasets.

sue here, a rather simple protocol is applied. A HMM classifier
based on the upper contour description of the image of the word
is used to derive posterior probabilities for the word to recog-
nize to belong to each class [56]. As it clearly appears in Table
1, the three datasets present heterogeneous levels of difficulty
with respect to the adopted classifier: RIMES is rather challeng-
ing, IFN/ENIT is of intermediate difficulty, while IRONOFF is
the easiest to cope with.

After the classification step, the posterior probability distri-
bution of the HMM classifier is either directly used to make a
precise decision, or converted into a consonant mass function
by inverse pignistic transform [66] to make an imprecise deci-
sion. Then, the two proposed generalizations of the pignistic
transform are applied, with different values of k ∈ {2, 3, 4}. Per-
formances are measured as explained in the previous section,
and are presented in Table 2. They are based on the values
T, α j, β j summarized in Table 3.

In Table 2 we consider the accuracy differential ∆ = Acc(Q)−
iAcc(Q) for both asymmetric and geometric transform. Pos-
itive values (≥ 0.4) show therefore an improvement with re-
spect to classical precise decision, whereas values close to zero
(|∆| < 0.1) indicate that the imprecise and precise decisions
are quite equivalent. There are no negative values (≤ −0.4) to
indicate a lower accuracy of imprecise decisions. In particu-
lar, the improvement is always significant for the RIMES and
IRONOFF datasets. On the other hand, no real variations ap-
pears in the case of the IFN/ENIT dataset.

Now, let us compare the performances of asymmetric and
geometric k-additive pignistic transform. The improvements
associated with the geometric transform are clearly greater on
the RIMES and IRONOFF datasets, whereas they are neck to
neck with those produced by the asymmetric k-additive pignis-
tic transform on the IFN/ENIT dataset. From this comparison,
the geometric transform seems to perform better than the asym-
metric one, in spite of a less clear semantic intepretation.

Nonetheless, a more refined analysis shows that the asym-
metric transform has in fact some advantages over the ge-
ometric one. Whatever the cardinality of k it appears that
pAcc(i), ∀i ≤ k − 1 is greater for the asymmetric case than for
the geometric case (with only one exception with the RIMES
dataset where k = 4 and i = 2). In other words, “asymmetric”
decisions seem to be always more trustworthy when the cardi-
nality of the decision is small. This comes from the fact that

the asymmetric redistribution pattern supports the largest focal
elements, so that it is less likely to encourage decisions focused
on “small” focal sets. When this happens, the decision is rather
robust.

9. Conclusion

In this article we formalized the notion of “imprecise deci-
sion” within the framework of Dempster-Shafer Theory, and
more precisely, of the Transferable Belief Model. We argued
that k-additive belief functions are suitable to model such im-
precise decisions, a point which in turn justifies the search for
a generalization of the pignistic transform to k-additive belief
functions, the outcome of which has the classical pignistic prob-
ability as a special case.

As the pignistic probability is justified by both a set of ra-
tionality arguments and the principle of insufficient reason, we
proposed two distinct generalizations, both of them fulfilling
the same rationality arguments. The asymmetric generalization
is based on an intuitive redistribution process of the mass as-
signments, in accord with the principle of insufficient reason.
The geometric transform is based on generalizing a well-known
geometrical interpretation of the Shapley value, as the barycen-
ter of the polytope of dominating probabilities.

As the barycenter of dominating k-additive belief functions
does not meet one of the rationality arguments, we had to mod-
ify the expression of this barycenter to derive an acceptable ge-
ometric generalization of the pignistic transform. Because of
its complexity and the fact that such geometrical considerations
are not really within the scope of this paper, we refer the proof
of the analytical expression of the barycenter of the set of dom-
inating k-additive belief functions to a different work.

From the point of view the practical application of such gen-
eralized transforms, we applied the corresponding decisions
strategies to a real world problem, i.e., multi-script handwrit-
ing recognition. In addition to a proposal for a suitable proto-
col to evaluate imprecise decisions, we conducted experiments
on three publicly available datasets, from which a number of
conclusions can be drawn. Both asymmetric and geometric
generalizations seem to provide interesting results. More pre-
cisely, it appears that, even if the asymmetric generalization
provides more accurate (focused) decision, the overall accu-
racy is slightly better with the geometric k-additive pignistic
transform, which experimentally justifies its derivation from the
barycenter of dominating k-additive belief functions.

Building on those encouraging results, future work will focus
on (1) other applications of imprecise decision, (2) a more ex-
haustive study of the admissible k-additive transforms of belief
functions, (3) the formal geometrical study of the barycenter of
the set of dominating k-additive belief functions, and possibly
(4) a reformulation/generalization of the original rationality ar-
guments, in order to link in a more natural way the geometric
k-additive pignistic transform with such barycenter.
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Datasets RIMES IFN/ENIT IRONOFF
Pignistic Transform Asymmetric Geometric Asymmetric Geometric Asymmetric Geometric

k = 2
Q 1.778 1.520 1.705 1.511 1.675 1.408

Acc(Q) (%) 64.96 63.91 78.00 77.913 90.29 89.69
iAcc(Q) (%) 63.67 60.50 77.95 76.75 89.60 88.04

∆ +1.29 +3.41 +0.06 +1.16 +0.69 +1.64
pAcc(1) (%) 70.12 60.11 85.67 78.81 96.05 92.27
pAcc(2) (%) 64.22 65.66 76.40 77.48 88.91 87.82

k = 3
Q 2.235 2.081 2.075 1.956 2.068 1.897

Acc(Q) (%) 69.22 68.91 79.95 79.66 92.11 92.12
iAcc(Q) (%) 67.75 66.86 80.00 79.50 91.67 90.90

∆ +1.47 +2.04 -0.04 +0.16 +0.45 +1.21
pAcc(1) (%) 70.95 66.25 85.91 83.44 96.00 94.36
pAcc(2) (%) 69.48 69.32 80.62 79.90 91.07 90.59
pAcc(3) (%) 68.81 69.36 77.97 78.03 91.53 92.06

k = 4
Q 2.72 2.632 2.467 2.401 2.536 2.417

Acc(Q) (%) 71.76 71.37 81.19 80.89 94.06 93.91
iAcc(Q) (%) 70.53 70.02 81.20 81.00 92.76 92.48

∆ +1.23 +1.35 -0.01 -0.11 +1.31 +1.43
pAcc(1) (%) 74.21 72.37 87.10 86.67 96.76 95.93
pAcc(2) (%) 72.45 72.64 83.21 82.75 93.19 93.11
pAcc(3) (%) 71.76 70.72 80.09 79.63 93.61 93.52
pAcc(4) (%) 71.14 71.14 79.35 78.96 94.02 93.88

Table 2: Comparison between our algorithm and the classical approach.

Datasets T k = 2 k = 3 k = 4
Asymmetric α1, β1, α2, β2 α1, β1, α2, β2, α3, β3 α1, β1, α2, β2, α3, β3, α4, β4

Geometric α1, β1, α2, β2 α1, β1, α2, β2, α3, β3 α1, β1, α2, β2, α3, β3, α4, β4

RIMES 3000 666, 467, 2334, 1499 661, 469, 973, 676, 1366, 940 539, 400, 686, 497, 850, 610, 925, 658
1439, 865, 1561, 1025 883, 585, 991, 687, 1126, 781 619, 448, 709, 515, 830, 587, 842, 599

IFN/ENIT 3000 886, 759, 2114, 1615 887, 762, 1001, 807, 1112, 867 775, 675, 786, 654, 703, 563, 736, 584
1468, 1157, 1532, 1187 1045, 872, 1040, 831, 915, 714 833, 722, 800, 662, 697, 555, 670, 529

IRONOFF 3979 1292, 1241, 2687, 2389 1299, 1247, 1109, 1010, 1571, 1438 1080, 1045, 808, 753, 971, 909, 1120, 1053
2354, 2172, 1625,1427 1631, 1539, 1126, 1020, 1222, 1125 1229, 1179, 842, 784, 927, 867, 981, 921

Table 3: Nessary values for the computations of the results of Table 2.
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Appendix A. Proofs

In this section, we present the demonstrations of the theorems
and propositions given in the article.

Appendix A.1. Property 3

If we use the shorthand notation #ρ for the cardinality of the
set of the permutations ρ of Ω, then, the center of mass B1[b]
of B1[b] is given by ∑

ρ

pρ[b]
#ρ

which, by Equation (11), corresponds to a Bayesian mass func-
tion which assigns to any focal element {ωi} the value

∑
B⊇{ωi}

m(B)
#ρ : ∀ω j <ρ ωi : B 2 {ω j}

#ρ
.

where ω j <ρ ωi indicates that ω j comes before ωi in the list of
elements associated with the permutation ρ. To simplify this ex-
pression, we need to compute for each singleton focal element
B ⊇ {ωi} the number of permutations ρ of Ω such that B does
not include any singleton ω j which comes before ωi (ω j <ρ ωi)
in the associated list {ωρ(1), ..., ωρ(|Ω|)}.

For all possible positions of ω j in the list, the permutation
must be such that all elements before ω j are extracted from Bc,
the complement of B. In any admissible permutation, ω j has to
appear in one of the first |Ω|−|B|+1 locations (as otherwise some
other elements of B would come before ω j in the list). For each
position i of ω j, the number of admissible permutations is given
by the possible dispositions (|Ω|−|B|)!

[(|Ω|−|B|)−(i−1)]! of (|Ω| − |B|) points
(the elements of Bc) in i − 1 locations (the elements of the list
before ω j), multiplied by the number (|Ω| − i)! of permutations
of the remaining n − i singletons, which can appear after ω j in
any order.

Then, B1[b] is given by a mass function which assigns to
{ωi} the value:

∑
B⊇{ωi}

m(B)
|Ω|−|B|+1∑

i=1

(|Ω| − |B|)!
[(|Ω| − |B|) − (i − 1)]!

(|Ω| − i)!
|Ω|!

.

We can further simplify the multiplicative coefficient of m(B)

in the above expression, as follows:

|Ω|−|B|+1∑
i=1

(|Ω| − |B|)!
[(|Ω| − |B|) − (i − 1)]!

(|Ω| − i)!
|Ω|!

=

|Ω|−|B|+1∑
i=1

(|Ω| − |B|)!
[(|Ω| − i) − (|B| − 1)]!

(|Ω| − i)!
|Ω|!

=

|Ω|−|B|+1∑
i=1

(|Ω| − |B|)!
[(|Ω| − i) − (|B| − 1)]!

(|B| − 1)!
(|B| − 1)!

(|Ω| − i)!
|Ω|!

=
(|Ω| − |B|)!(|B| − 1)!

|Ω|!

×

|Ω|−|B|+1∑
i=1

(|Ω| − i)!
[(|Ω| − i) − (|B| − 1)]!(|B| − 1)!

=
(|Ω| − |B|)!(|B| − 1)!

|Ω|!

|Ω|−|B|+1∑
i=1

(
|Ω| − i
|B| − 1

)
,

which, after recalling that
∑|Ω|−|B|+1

i=1

(
|Ω|−i
|B|−1

)
=

(
|Ω|

|B|

)
becomes

=
(|Ω| − |B|)!(|B| − 1)!

|Ω|!

(
|Ω|

|B|

)
=

1
|B|
.

As a consequence,

B1[b] =
∑

B⊇{ωi}

m(B)
|B|

= m[S ](x), (A.1)

i.e., B1[b] corresponds to the pignistic probability m[S ] [2].

Appendix A.2. Conjecture 1

In the case of a binary frame Ω = {x, y} the list of focal
elements of size at most k = 2 obviously reads as P2(Ω) =

{{x}, {y}, {x, y}}, so that its possible permutations are six:

ρ1 = ({x}, {y},Ω) ρ2 = ({x},Ω, {y})
ρ3 = ({y}, {x},Ω) ρ4 = ({x},Ω, {y})
ρ5 = (Ω, {x}, {y}) ρ6 = (Ω, {y}, {x}) .

According to Conjecture 1, both permutations in each row gen-
erate the same 2-additive belief function.

Namely, having denoted by ~m = [m(x),m(y),m(Ω)]′ an arbi-
trary mass vector, the above pairs of permutations generate the
following vertices:

ρ1, ρ2 → [m(x) + m(Ω),m(y), 0]′

ρ3, ρ4 → [m(x),m(y) + m(Ω), 0]′

ρ5, ρ6 → [m(x),m(y),m(Ω)]′.
(A.2)

Figure A.5 depicts the belief space and the polytope B2[b] of
2-additive belief functions dominating a given belief function b
for a frame Ω of cardinality 2. Here each belief function is a
vector b = [m(x),m(y)]′ and B = Cl(bx, by, bΩ). As it can be
appreciated, the last vertex in (A.2) of B2[b] corresponds to the
original belief function b, while the first two are nothing but the
vertices of the set B1[b] of dominating probabilities.

We can notice two facts: On one side, the Equation 17 seems
confirmed by the analysis of the binary case with k = 2 (the cas
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Figure A.5: The polytope B2[b] of the 2-additive belief functions dominating
a given belief function b defined on a frame of size 2. The vertices of such
polytope meet the conjectured form (17), and are given by the basic probability
assignments of Equation (A.2).

where k = 1 corresponding to the pignistic transform). On the
other side, unlike the case of dominating probabilities, there is
no 1-1 correspondence between vertices of the polytope and the
permutations of focal elements, as each vertex is produced by
two different permutations. However, all vertices are associated
with the same number of permutations. Finally, the conjecture
holds in the binary case.

Appendix A.3. Theorem 1
Under the assumption that Conjecture 1 is true, the barycen-

ter of Bk[b] is ∑
ρ

bρ[b]
#ρ

.

By Equation (11), this corresponds to a mass function which
assigns to each focal set A: |A| ≤ k the value:∑

B⊇A

m(B)
#ρ : ∀A′ <ρ A : B 2 A′

#ρ
. (A.3)

As in the proof of Property 3, the coefficient of m(B) in the
above equation is proportional to the number of permutations
ρ of Pk(Ω) such that B does not contain any element of Pk(Ω)
that comes before A in the permutation.

Obviously, there are |Pk(Ω)| elements in Pk(Ω). Of these,
|Pk(Ω)| − |Pk(B)| are not included in B. Let l = |B|. Let us in-
troduce for sake of simplicity the notationM(l, k) =

∑i=k
i=1

(
l
i

)
=

|Pk(B)|. As in Appendix A.1, for each position i of A, the num-
ber of admissible permutations is given by the dispositions

(M(n, k) −M(l, k))!
[(M(n, k) −M(l, k)) − (i − 1)]!

of the M(n, k) − M(l, k) subsets of size ≤ k which are not in-
cluded in B over i − 1 locations (the elements of the list before

A), multiplied by the number (M(n, k) − i)! of permutations of
the remainingM(n, k)− i elements of Pk(Ω), which can appear
after A in any order.

The same derivations of Appendix A.1 hold then for the case
of dominating k-additive belief functions as well, when we re-
place |Ω| withM(|Ω|, k) and |B| withM(|B|, k). Therefore, the
multiplicative coefficient of m(B) in Equation (A.3) turn out to
be 1
M(l,k) = 1

|Pk(B)| .

Appendix A.4. Proposition 2
Let us first consider the asymmetric transform. To establish

this proposition, the simplest way is to consider the redistribu-
tion process of the asymmetric k-additive pignistic transform in
the following two scenarios: First, when two consecutive trans-
formations with thresholds k1 and k2 (with k1 > k2) are applied,
and second, when a single transformation with the threshold
min(k1, k2) = k2 is applied. Then, it is sufficient to check that
the redistribution process of the mass attributed to a set of car-
dinality > k1 leads to the same results in these two scenarios.

Let us consider A, a subset of Ω with |A| > k1. In both sce-
narios m(A) is redistributed to subsets of cardinality ≤ k1. Let
us call B any subset of Ω such that k2 < |B| ≤ k1, and C any
subset with |C| ≤ k2.

In the first scenario, a single transform (k = k2) is used. Each
C ⊆ Ω with |C| ≤ k2 receives directly a number of parts of m(A)
which is, by definition, proportional to |C|: HA

k2
(C) ∝ |C|. In the

second scenario, two transforms (first k = k1, and then, k = k2)
are used. After the first transform, the sets C and B receive some
part of m(A). Then, after the second transform, the mass of the
sets B is redistributed to the sets C. As the B have received
some part of m(A) after the first transform, these parts of m(A)
are redistributed to C after the second transform. Thus, C-type
sets receive directly some mass from A (first transform) but also
receive indirectly some mass from A that has transited via the
sets B. If we note HA→B

k1,k2
(C) the mass that has transited from A,

via B to C, we have that:

HA→B
k1,k2

(C) ∝ |C|.

This can be verified as, first we have HA
k1

(B) ∝ |B|, and then, for
each B, HA

k1
(B) is shared and redistributed in a manner ∝ |C|,

which explains the previous equation. Hence, C’s receive from
A the mass: (

HA→B
k1,k2

(C)︸     ︷︷     ︸
∝|C|

+ HA
k2

(C)︸ ︷︷ ︸
∝|C|

)
∝ |C|.

Finally, it is easy to check that, whatever the scenario, C-
type sets receive all the mass initially associated with A, so that
it is shared among such C’s in a manner proportional to their
cardinality. As m(A) and the sum of all the cardinality of the
sets C is determined once and for all, both scenarios lead to the
same mass redistribution. A similar demonstration holds for the
geometric generalization.

Appendix A.5. Proposition 3
The proof is the same for the asymmetric and geometric

transforms. Thus, we only consider the case of the geomet-
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ric one. We need to show that, ∀A ⊆ Ω, b(A) ≤ b[G]
k (A). By

definition, b(A) =
∑

B⊆A m(B) and b[G]
k (A) =

∑
B⊆A m[G]

k (B).
Let us denote by HA

k (B) the mass inherited by B from A, and
by Hk(B) the total mass inherited by B from focal elements of
cardinality k. Of course, we have

Hk(B) = m[GP]
k (B) − m(B) =

∑
A⊃B, |A|>k

HA
k (B). (A.4)

Moreover, by Equation (16), one has that:

Hk(B) = m[G]
k (B) − m(B) > 0 if |B| ≤ k,

as the terms Hk(B) correspond to some mass inherited from fo-
cal elements of cardinality > k, redistributed to focal elements
of cardinality ≤ k. Now:
◦ If |A| ≤ k, then, b[G]

k (A) − b(A) =
∑

B⊆A Hk(B) > 0.
◦ If |A| > k, then,

b[G]
k (A) =

∑
B⊆A,
|B|≤k

m[G]
k (B) +

∑
B⊆A,
|B|>k

m[G]
k (B)

︸        ︷︷        ︸
=0

=
∑
B⊆A,
|B|≤k

m(B) + Hk(B)

(A.5)
According to the previous notation (A.4), it is possible to de-
compose Hk(B) with respect to the origin of the mass received
by B from all C ⊆ Ω s.t. |C| > k. Some of them are included in
A, some others are not:

Hk(B) =
∑
C⊆A
|C|>k

HC
k (B) +

∑
C1A
|C|>k

HC
k (B)

so that

b[G]
k (A) =

∑
B⊆A
|B|≤k

m(B) +
∑
B⊆A
|B|≤k

∑
C⊆A
|C|>k

HC
k (B) +

∑
B⊆A
|B|≤k

∑
C1A
|C|>k

HC
k (B). (A.6)

Now we can notice that:∑
B⊆A
|B|≤k

∑
C⊆A
|C|>k

HC
k (B) =

∑
B⊆A
|B|>k

m(B),

as the mass associated to subsets of A with cardinality > k is
redistributed to the subsets of A with cardinality ≤ k. Thus,

b[G]
k (A) =

∑
B⊆A
|B|≤k

m(B) +
∑
B⊆A
|B|>k

m(B)

︸                     ︷︷                     ︸
b(A)

+
∑
B⊆A
|B|≤k

∑
C1A
|C|>k

HC
k (B)

︸            ︷︷            ︸
≥0

i.e. b[G]
k (A) ≥ b(A), and b � b[G]

k .

Appendix A.6. Proposition 4
1) and 2) see [50].
3) • Existance and unicity: By construction.
• k-additivity: see [50].
• Dominance: Proposition 3.

4) By definition, we have:

A[b[A]
k ] =

{ (
b[A]

k

)[S ]
,
(
b[A]

k

)[A]

2
, · · · ,

(
b[A]

k

)[A]

k−1
,
(
b[A]

k

) }

which by Proposition 2 reads:

A[b[A]
k ] =

{
b[S ], b[A]

2 , · · · , b[A]
k−1, b

[A]
k

}
On the other hand, we have:

A[b] =
{
b[S ], b[A]

2 , · · · , b[A]
K−1, b

}
=

{
b[S ], b[A]

2 , · · · , b[A]
k−1, b

[A]
k︸                        ︷︷                        ︸

A[b[A]
k ]

, b[A]
k+1, · · · , b

[A]
K−1, b

}

Finally, A[b[A]
k ] ⊆ A[b]. A similar proof holds for G[b[G]

k ] ⊆
G[b].
5) By Proposition 2, we have b[A]

k2
=

(
b[A]

k1

)[A]

k2
, and, by Propo-

sition 3, we have b[A]
k1
�

(
b[A]

k1

)[A]

k2
, which leads to b[A]

k1
� b[A]

k2
.

Again, a similar proof holds for b[G]
k1
� b[G]

k2
.

6) By direct application of 5).

Appendix A.7. Efficiency and Linearity arguments

Projectivity is immediate.
Anonimity is also immediate.
False Event is a direct consequence of Property 4.6: As the
pignistic transform dominates both asymmetric and geometric
k-additive pignistic transforms, and as b[S ] assigns null mass to
every false event, this is necessarily the case for our two gener-
alizations as well.
Efficiency: The result of the two k-additive pignistic transforms
is a belief function whose decision space isPk(Ω), and there are
no focal elements outside Pk(Ω). Hence, the mass assignments
associated with all the element of the decision space Pk(Ω) sum
up to 1. Therefore, a bet on the entire such decision space is
bound to be a winning bet.
Linearity: We only consider the asymmetric transform, as the
proof is similar for the geometric one. Let us call m[1] and m[2]

two mass functions, and m[A1]
k and m[A2]

k their corresponding
asymmetric k-additive transforms. Let α, β ∈ [0, 1] be scalars
such that α + β = 1. We define their affine combination as
m[3] = αm[1] +βm[2], denote by m[A3]

k the asymmetric k-additive
transform of such affine combination m[3]. The Linearity argu-
ment amounts to the following equality:

α · m[A1]
k + β · m[A2]

k = m[A3]
k .

The latter can be easily verified, as ∀B ∈ Pk(Ω), we have:

αm[A1]
k (B) + βm[A2]

k (B)

= α
[
m[1](B) +

∑
A⊃B,
A⊆Ω,
|A|>k

m[1](A)|B|
N(|A|,k)

]
+ β

[
m[2](B) +

∑
A⊃B,
A⊆Ω,
|A|>k

m[2](A)|B|
N(|A|,k)

]
= αm[1](B) + βm[2](B) +

∑
A⊃B,A⊆Ω,
|A|>k

[
αm[1](A) + βm[2](A)

]
|B|

N(|A|, k)

= m[3](B) +
∑

A⊃B,A⊆Ω,|A|>k

m[3](A) · |B|
N(|A|, k)

= m[A3]
k (B).

(A.7)
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