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Abstract. In this paper we discuss the problem of approximating a be-
lief function (b.f.) with a necessity measure or “consonant belief function”
(co.b.f.) from a geometric point of view. We focus in particular on outer
consonant approximations, i.e. co.b.f.s less committed than the original
b.f. in terms of degrees of belief. We show that for each maximal chain
of focal elements the set of outer consonant approximation is a polytope.
We describe the vertices of such polytope, and characterize the geometry
of maximal outer approximations.

1 Introduction

The theory of evidence (ToE) [10] is a popular approach to uncertainty descrip-
tion. Probabilities are there replaced by belief functions (b.f.s), which assign
values between 0 and 1 to subsets of the sample space Θ instead of single ele-
ments. Possibility theory [4], on its side, is based on possibility measures, i.e.,
functions Pos : 2Θ → [0, 1] on Θ such that Pos(

⋃
i Ai) = supi Pos(Ai) for any

family {Ai|Ai ∈ 2Θ, i ∈ I} where I is an arbitrary set index. Given a possibility
measure Pos, the dual necessity measure is defined as Nec(A) = 1− Pos(A).
Necessity measures have as counterparts in the theory of evidence consonant
b.f.s, i.e. belief functions whose focal elements are nested [10]. The problem of
approximating a belief function with a necessity measure is then equivalent to
approximating a belief function with a consonant b.f. [5, 9, 8, 1]. As possibilities
are completely determined by their values on the singletons Pos(x), x ∈ Θ, they
are less computationally expensive than b.f.s, making the approximation process
interesting for many applications. The points of contact between evidence (in the
transferable belief model implementation) and possibility theory have been for
instance investigated by Ph. Smets [11].

A geometric interpretation of uncertainty theory has been recently proposed
[2] in which several classes of uncertainty measures (among which belief func-
tions and possibilities) are represented as points of a Cartesian space.
In this paper we consider the problem of approximating a belief function with a
possibility/necessity [5] from such geometric point of view. We focus in particu-
lar on the class of outer consonant approximations of belief functions.
More precisely, after reviewing the basic notions of evidence and possibility the-
ory we formally introduce the consonant approximation problem, and in partic-
ular the notion of outer consonant approximation. We then recall how the set of
all consonant belief functions forms a simplicial complex, a structured collection



of higher-dimensional triangles or “simplices”. Each such maximal simplex is as-
sociated with a maximal chain of subsets of Θ. Starting from the simple binary
case we prove that the set of outer consonant approximations of a b.f. forms, on
each such maximal simplex, a polytope. We investigate the form of its vertices
and prove that one of them corresponds to the maximal outer approximation,
the one [5] generated by a permutation of the element of Θ. To improve the read-
ability of the paper all major proofs are collected in an Appendix. Illustrative
examples accompany all the presented results.

2 Outer consonant approximations of belief functions

Belief and possibility measures. A basic probability assignment (b.p.a.) over
a finite set (frame of discernment [10]) Θ is a function m : 2Θ → [0, 1] on its
power set 2Θ = {A ⊆ Θ} such that m(∅) = 0,

∑
A⊆Θ m(A) = 1, and m(A) ≥ 0

∀A ⊆ Θ. Subsets of Θ associated with non-zero values of m, {E ⊂ Θ : m(E) 6= 0}
are called focal elements. The belief function b : 2Θ → [0, 1] associated with a
basic probability assignment m on Θ is defined as: b(A) =

∑
B⊆A m(B). The

plausibility function (pl.f.) plb : 2Θ → [0, 1], A 7→ plb(A) such that plb(A) .=
1− b(Ac) =

∑
B∩A 6=∅mb(B) expresses the amount of evidence not against A.

A probability function is simply a peculiar belief function assigning non-zero
masses to singletons only (Bayesian b.f.): mb(A) = 0 |A| > 1. A b.f. is said to be
consonant if its focal elements {Ei, i = 1, ..., m} are nested: E1 ⊂ E2 ⊂ ... ⊂ Em.
It can be proven that [4, 7] the plausibility function plb associated with a belief
function b on a domain Θ is a possibility measure iff b is consonant. Equivalently,
a b.f. b is a necessity iff b is consonant.

Outer consonant approximations. Finding the “best” consonant approx-
imation of a belief function is equivalent to approximating a belief measure with
a necessity measure. B.f.s admit (among others) the following order relation

b ≤ b′ ≡ b(A) ≤ b′(A) ∀A ⊆ Θ (1)

called weak inclusion. We can then define the outer consonant approximations
[5] of a belief function b as those co.b.f.s such that co(A) ≤ b(A) ∀A ⊆ Θ (or
equivalently plco(A) ≥ plb(A) ∀A). With the purpose of finding outer approx-
imations which are minimal with respect to the weak inclusion relation (1))
Dubois and Prade [5] introduced a family of outer consonant approximations
obtained by considering all permutations ρ of the elements {x1, ..., xn} of the
frame of discernment Θ: {xρ(1), ..., xρ(n)}. A family of nested sets can be then
built {Sρ

1 = {xρ(1)}, Sρ
2 = {xρ(1), xρ(2)}, ..., Sρ

n = {xρ(1), ..., xρ(n)}} so that a new
consonant belief function coρ can be defined with b.p.a.

mcoρ(Sρ
j ) =

∑

i:min{l:Ei⊆Sρ
l }=j

mb(Ei). (2)

Sρ
j is assigned the mass of the focal elements of b included in Sρ

j but not in Sρ
j−1.



3 The complex of consonant belief functions

A useful tool to represent uncertainty measures and discuss issues like the ap-
proximation problem is provided by convex geometry. Given a frame of discern-
ment Θ, a b.f. b : 2Θ → [0, 1] is completely specified by its N − 2 belief values
{b(A), A ⊆ Θ, A 6= ∅, Θ}, N

.= 2|Θ|, and can then be represented as a point of
RN−2. The belief space associated with Θ is the set of points B of RN−1 which
correspond to b.f.s. Let us call

bA
.= b ∈ B s.t. mb(A) = 1, mb(B) = 0 ∀B 6= A (3)

the unique b.f. assigning all the mass to a single subset A of Θ (A-th categorical
belief function). It can be proven that [2] the belief space B is the convex closure
of all the categorical belief functions (3), B = Cl(bA, ∅ ( A ⊆ Θ) where Cl
denotes the convex closure operator: Cl(b1, ..., bk) = {b ∈ B : b = α1b1 + · · · +
αkbk,

∑
i αi = 1, αi ≥ 0 ∀i}.

More precisely B is an N − 2-dimensional simplex, i.e. the convex closure of
N − 1 (affinely independent1) points of the Euclidean space RN−1. The faces
of a simplex are all the simplices generated by a subset of its vertices. Each
belief function b ∈ B can be written as a convex sum as b =

∑
∅(A⊆Θ mb(A)bA.

Similarly the set of all Bayesian b.f.s is P = Cl(bx, x ∈ Θ).
Binary example. As an example consider a frame of discernment containing

only two elements, Θ2 = {x, y}. Each b.f. b : 2Θ2 → [0, 1] is determined by its
belief values b(x), b(y), as b(Θ) = 1 and b(∅) = 0 ∀b. We can then collect them
in a vector of RN−2 = R2:

[b(x) = mb(x), b(y) = mb(y)]′ ∈ R2. (4)

Since mb(x) ≥ 0, mb(y) ≥ 0, and mb(x) + mb(y) ≤ 1 the set B2 of all the
possible b.f.s on Θ2 is the triangle of Figure 1, whose vertices are the points
bΘ = [0, 0]′, bx = [1, 0]′, and by = [0, 1]′. The region P2 of all Bayesian b.f.s on
Θ2 is in this case the line segment Cl(bx, by). On the other side, consonant belief
functions can have as chain of focal elements either {{x}, Θ2} or {{y}, Θ2}.
As a consequence the region CO2 of all co.b.f.s is the union of two segments:
CO2 = COx ∪ COy = Cl(bΘ, bx) ∪ Cl(bΘ, by).

The consonant simplicial complex. The geometry of CO can be described
in terms of a concept of convex geometry derived from that of simplex [6].

Definition 1. A simplicial complex is a collection Σ of simplices such that

1. if a simplex belongs to Σ, then all its faces are in Σ;
2. the intersection of two simplices is a face of both.

Let us consider for instance two triangles on the plane (2-dimensional simplices).
Roughly speaking, the second condition says that the intersection of those tri-
angles cannot contain points of their interiors (Figure 2 left). It cannot also be
1 An affine combination of k points v1, ..., vk ∈ Rm is a sum α1v1 + · · ·+ αkvk whose

coefficients sum to one:
∑

i αi = 1. The affine subspace generated by the points
v1, ..., vk ∈ Rm is the set {v ∈ Rm : v = α1v1 + · · · + αkvk,

∑
i αi = 1}. If v1, ..., vk

generate an affine space of dimension k they are said to be affinely independent.
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Fig. 1. The belief space B for a binary frame is a triangle in R2 whose vertices are
the categorical belief functions bx, by, bΘ focused on {x}, {y} and Θ, respectively. The
probability region is the segment Cl(bx, by). Consonant belief functions are constrained
to belong to the union of the two segments COx = Cl(bΘ, bx) and COy = Cl(bΘ, by).

Fig. 2. Constraints on the intersection of simplices in a complex. Only the right-hand
pair of triangles meets condition (2) of the definition of simplicial complex.

any subset of their borders (middle), but has to be a face (right, in this case a
single vertex). It can be shown that [2]

Proposition 1. CO is a simplicial complex included in the belief space B.

CO is the union of a collection of
∏n

k=1

(
k
1

)
= n! simplices, each associated with

a maximal chain C = {A1 ⊂ · · · ⊂ An = Θ} of 2Θ:

CO =
⋃

C={A1⊂···⊂An}
Cl(bA1 , · · · , bAn).

4 Outer approximations in the binary case

We can then study the geometry of the set O[b] of all outer consonant approxi-
mations of a belief function b. In the binary case the latter is depicted in Figure 3



(dashed lines), as the intersection of the region of the points b′ with b′(A) ≤ b(A)
∀A ⊂ Θ, and the complex CO = COx ∪ COy of consonant b.f.s. Among them,

Fig. 3. Geometry of outer consonant approximations of a belief function b ∈ B2.

the co.b.f.s generated by the 2 possible permutations ρ1 = (x, y), ρ2 = (y, x) of
elements of Θ2 as in (2) correspond to the points coρ1 , coρ2 in Figure 3.

Let us denote by OC [b] the intersection of the set O[b] of all outer consonant
approximations with the component COC of the consonant complex, with C a
maximal chain of 2Θ. We can notice a number of interesting facts.
For each maximal chain C:
1. OC [b] is convex (in the binary case C = {x,Θ} or {y,Θ});
2. OC [b] is in fact a polytope, i.e. the convex closure of a number of vertices: in

particular a segment in the binary case (Ox,Θ[b] or Oy,Θ[b]);
3. the maximal (with respect to (1)) outer approximation of b is one of the

vertices of this polytope OC [b], the one (coρ, Equation (2)) associated with
the permutation ρ of singletons which generates the chain.

In the binary case there are just two such permutations, ρ1 = {x, y} and ρ2 =
{y, x}, which generate respectively the chains {x,Θ} and {y, Θ}.
We will prove that all those properties indeed hold in the general case.

5 Polytopes of outer consonant approximations

We first need a preliminary result on the basic probability assignment of conso-
nant belief functions weakly included in b [3].

Weak inclusion and mass re-assignment.



Lemma 1. Consider a belief function b with basic probability assignment mb. A
consonant belief function co is weakly included in b, for all A ⊆ Θ co(A) ≤ b(A),
if and only if there is a choice of coefficients {αB

A , B ⊆ Θ, A ⊇ B} with

0 ≤ αB
A ≤ 1 ∀B ⊆ Θ,∀A ⊇ B;

∑

A⊇B

αB
A = 1 ∀B ⊆ Θ (5)

such that co has basic probability assignment

mco(A) =
∑

B⊆A

αB
Amb(B). (6)

Lemma 1 states that the b.p.a. of any outer consonant approximation of b is
obtained by re-assigning the mass of each f.e. A of b to some B ⊇ A. We will
extensively use this result in the following.

Vertices of the polytopes. Given a consonant belief function co weakly
included in b, its focal elements will form a chain C = {B1, ..., Bn} (|Bi| = i)
associated with a specific maximal simplex of CO. According to Lemma 1 the
mass of each focal element A of b can be re-assigned to some of the events of the
chain B1, ..., Bn which contain A in order to obtain co.
It is therefore natural to conjecture that, for each maximal simplex COC of CO
associated with a maximal chain C, OC [b] is the convex closure of the co.b.f.s
oB[b] with b.p.a.

moB [b](Bi) =
∑

A⊆Θ:B(A)=Bi

mb(A) (7)

each of them associated with an “assignment function”

B : 2Θ → C
A 7→ B(A) ⊇ A

(8)

which maps each event A to one of the events of the chain C = {B1 ⊂ ... ⊂ Bn}
which contains A. As a matter of fact:

Theorem 1. For each simplicial component COC of the consonant space associ-
ated with any maximal chain of focal elements C = {B1, ..., Bn} the set of outer
consonant approximation of any b.f. b is the convex closure

OC [b] = Cl(oB[b], ∀B)

of the co.b.f.s (7) indexed by all admissible assignment functions (8).

In other words, OC [b] is a polytope, the convex closure of a number of b.f.s
whose number is equal to the number of assignment functions (8). Each B is
characterized by assigning each event A to an element Bi ⊇ A of the chain C.

As we will see in the following ternary example the points (7) are not guar-
anteed to be all proper vertices of the polytope OC [b]. Some of them can be
obtained as a convex combination of the others, i.e. they may lie on a side of the
polytope.



Maximal outer consonant approximations. We can prove instead that
the outer approximation (2) obtained by permuting the singletons of Θ as in
Section 2 is not only a pseudo-vertex of OC [b], but it is an actual vertex, i.e.
it cannot be obtained as a convex combination of the others. More precisely,
all possible permutations of elements of Θ generate exactly n! different outer
approximations of b, each of which lies on a single simplicial component of the
consonant complex. Each such permutation ρ generates a maximal chain Cρ =
{Sρ

1 , ..., Sρ
n} of focal elements so that the corresponding b.f. will lie on COCρ

.

Theorem 2. The outer consonant approximation coρ (2) generated by a per-
mutation ρ of the singletons is a vertex of OCρ

[b].

We can prove that the maximal outer approximation is indeed the vertex coρ

associated with the corresponding permutation ρ of the singletons which gener-
ates the maximal chain C = Cρ (as in the binary case of Section 4).
By definition (2) coρ assigns the mass mb(A) of each focal element A to the
smallest element of the chain containing A. By Lemma 1 each outer consonant
approximation of b with chain C, co ∈ OCρ [b], is the result of re-distributing the
mass of each focal element A to all its supersets in the chain {Bi ⊇ A, Bi ∈ C}.
But then each such co is weakly included in coρ for its b.p.a. can be obtained by
re-distributing the mass of the minimal superset Bj , where j = min{i : Bi ⊆ A},
to all supersets of A.

Corollary 1. The maximal outer consonant approximation with maximal chain
C of a belief function b is the vertex (2) of OCρ [b] associated with the permutation
ρ of the singletons which generates C = Cρ.

Example. For a better understanding of the above results, let us con-
sider as an example a belief function b on a ternary frame Θ = {x, y, z} and
study the polytope of outer consonant approximations with focal elements C =
{{x}, {x, y}, {x, y, z}}. According to Theorem 1 this is the convex closure of all
assignment functions B : 2Θ → C: there are

∏3
k=1 k23−k

= 14 · 22 · 31 = 12 such
functions. We list them here according to the notation

B = B({x}), B({y}),B({z}), B({x, y}), B({x, z}),B({y, z}),B({x, y, z}),

i.e.,

B1 = {x}, {x, y}, Θ, {x, y}, Θ, Θ, Θ;
B2 = {x}, {x, y}, Θ, Θ, Θ, Θ, Θ;
B3 = {x}, Θ, Θ, {x, y}, Θ, Θ, Θ;
B4 = {x}, Θ, Θ, Θ, Θ, Θ, Θ;
B5 = {x, y}, {x, y}, Θ, {x, y}, Θ, Θ, Θ;
B6 = {x, y}, {x, y}, Θ, Θ, Θ, Θ, Θ;

B7 = {x, y}, Θ, Θ, {x, y}, Θ, Θ, Θ;
B8 = {x, y}, Θ, Θ, Θ, Θ, Θ, Θ;
B9 = Θ, {x, y}, Θ, {x, y}, Θ, Θ, Θ;
B10 = Θ, {x, y}, Θ, Θ, Θ, Θ, Θ;
B11 = Θ, Θ, Θ, {x, y}, Θ, Θ, Θ;
B12 = Θ, Θ, Θ, Θ, Θ, Θ, Θ.



They correspond to the following co.b.f.s with b.p.a. [m({x}),m({x, y}),m(Θ)]′:

oB1 = [mb(x), mb(y) + mb(x, y), 1− b(x, y) ]′;
oB2 = [mb(x), mb(y), 1−mb(x)−mb(y) ]′;
oB3 = [mb(x), mb(x, y), 1−mb(x)−mb(x, y) ]′;
oB4 = [mb(x), 0, 1−mb(x) ]′;
oB5 = [0, b(x, y), 1− b(x, y) ]′;
oB6 = [0, mb(x) + mb(y), 1−mb(x)−mb(y) ]′;
oB7 = [0, mb(x) + mb(x, y), 1−mb(x)−mb(x, y) ]′;
oB8 = [0, mb(x), 1−mb(x) ]′;
oB9 = [0, mb(y) + mb(x, y), 1−mb(y)−mb(x, y) ]′;
oB10 = [0, mb(y), 1−mb(y) ]′;
oB11 = [0, mb(x, y), 1−mb(x, y) ]′;
oB12 = [0, 0, 1 ]′.

(9)

Figure 4-left shows the resulting polytope OC [b] for a belief function mb(x) =

Fig. 4. Not all the points (7) associated with assignment functions are actual vertices of
OC[b]. Here the polytope OC[b] of outer consonant approximations for the belief function
mb(x) = 0.3, mb(y) = 0.5, mb({x, y}) = 0.1, mb(Θ) = 0.1 defined on Θ = {x, y, z},
with C = {{x}, {x, y}, Θ} is plotted in red, together with all the 12 points (9) (red
squares). Many of them lie on a side of the polytope. However, the point obtained by
permutation of singletons (2) is an actual vertex (red star). The minimal and maximal
outer approximations with respect to weak inclusion are oB12 and oB1 , respectively.

0.3, mb(y) = 0.5, mb({x, y}) = 0.1, mb(Θ) = 0.1, in the component COC =
Cl(bx, b{x,y}, bΘ) of the consonant complex (black triangle in the figure). The



polytope OC [b] is plotted in red, together with all the 12 points (9) (red squares).
Many of them lie on some side of the polytope. However, the point obtained by
permutation of singletons (2) is an actual vertex (red star): it is the first oB1 of
the list (9).

It is interesting to point out how the points (9) are ordered with respect to the
weak inclusion relation (we just need to apply its definition, or the re-distribution
property of Lemma 1). The result is summarized in the graph of Figure 5. We

Fig. 5. Partial order of the points (9) with respect to the weak inclusion relation.
For sake of simplicity we denote by Bi the co.b.f. oBi associated with the assignment
function Bi. An arrow from Bi to Bj stands for oBj ≤ oBi .

can appreciate that the vertex oB1 generated by singleton permutation is indeed
the maximal outer approximation of b, as stated by Corollary 1.

6 Conclusions

In this paper we studied the convex geometry of the consonant approximation
problem, focusing in particular on the properties of outer consonant approxima-
tions. We showed that such approximations form a polytope in each maximal
simplex of the complex CO of all consonant belief functions. We proved that for
a given chain the maximal outer approximation is a vertex of the corresponding
polytope and is generated by a permutation of the elements of the frame.
As they also live on simplicial complexes, natural extensions of this study to
guaranteed possibility measures and consistent belief functions are in sight.

Appendix

Proof of Theorem 1. We need to prove that:



1. each co.b.f. co ∈ COC such that co(A) ≤ b(A) for all A ⊆ Θ can be written
as a convex combination of the points (7): co =

∑
B αBoB[b],

∑
B αB = 1,

αB ≥ 0 ∀B;
2. vice-versa, each convex combination of the oB[b] satisfies

∑
B αBoB[b](A) ≤

b(A) for all A ⊆ Θ.

Let us consider (2) first. By definition of b.f. oB[b](A) =
∑

B⊆A,B∈C moB [b](B)
where moB [b](B) =

∑
X⊆B:B(X)=B mb(X) so that

oB[b](A) =
∑

B⊆A,B∈C

∑

X⊆B:B(X)=B

mb(X) =
∑

X⊆Bi:B(X)=Bj ,j≤i

mb(X) (10)

where Bi is the largest element of the chain C included in A. As Bi ⊆ A (10) is
obviously not larger than

∑
B⊆A mb(B) = b(A), so that oB[b](A) ≤ b(A) for all

A. Hence ∀A ⊆ Θ

∑

B

αBoB[b](A) ≤
∑

B

αBb(A) = b(A)
∑

B

αB = b(A).

Let us prove point (1). According to Lemma 1, if ∀A ⊆ Θ co(A) ≤ b(A) then
the mass mco(Bi) of each event Bi of the chain is

mco(Bi) =
∑

A⊆Bi

mb(A)αA
Bi

. (11)

To prove (1) we then need to write (11) as a convex combination of the moB [b](Bi),
i.e.

∑

B

αBoB[b](Bi) =
∑

B

αB

∑

X⊆Bi:B(X)=Bi

mb(X) =
∑

X⊆Bi

mb(X)
∑

B(X)=Bi

αB.

In other words we need to show that the system of equations
{

αA
Bi

=
∑

B(A)=Bi

αB ∀i = 1, ..., n; ∀A ⊆ Bi (12)

has at least one solution {αB} such that
∑

B αB = 1 and ∀B αB ≥ 0. The
normalization constraint is in fact trivially satisfied as from (12) it follows that

∑

Bi⊇A

αA
Bi

= 1 =
∑

Bi⊇A

∑

B(A)=Bi

αB =
∑

B

αB

i.e.
∑

B αB = 1. Using the normalization constraint the system of equations (12)
reduces to

{
αA

Bi
=

∑

B(A)=Bi

αB ∀i = 1, ..., n− 1; ∀A ⊆ Bi. (13)



We can show that each equation in the reduced system (13) involves at least
one variable αB which is not present in any other equation. Formally, the set
of assignment functions which meet the constraint of equation A,Bi but not all
others is not empty:
{

B : (B(A) = Bi)
∧

∀j=1,...,n−1;j 6=i

(B(A) 6= Bj)
∧

∀A′ 6=A;∀j=1,...,n−1

(B(A′) 6= Bj)
}
6= ∅.

(14)
But the assignment functions B such that B(A) = Bi and ∀A′ 6= A B(A′) = Θ
all meet condition (14). Indeed they obviously meet B(A) 6= Bj for all j 6= i
while clearly for all A′ ⊆ Θ B(A′) = Θ 6= Bj , as j < n so that Bj 6= Θ.

A non-negative solution of (13) (and hence of (12)) can be obtained by setting
for each equation one of such variables equal to the first member αA

Bi
, and all

the others to zero.
Proof of Theorem 2. The proof is divided in two parts.
1. We first need to find an assignment B : 2Θ → Cρ which generates coρ.

Each singleton xi is mapped by ρ to the position j: i = ρ(j). Then, given
any event A = {xi1 , ..., xim} its elements are mapped to the new positions
xji1

, ..., xjim
, where i1 = ρ(ji1), ..., im = ρ(jim). But then the map

Bρ(A) = Bρ({xi1 , ..., xim}) = Sρ
j

.= {xρ(1), ..., xρ(j)}
where

j
.= max{ji1 , ..., jim}

maps each event A to the smallest Sρ
i in the chain which contains A: j = min{i :

A ⊆ Sρ
i }. Therefore it generates a co.b.f. with b.p.a. (2), i.e. coρ.

2. In order for coρ to be an actual vertex, we need to ensure that it cannot
be written as a convex combination of the other (pseudo) vertices oB[b]:

coρ =
∑

B 6=Bρ

αBoB[b],
∑

B 6=Bρ

αB = 1, ∀B 6= Bρ αB ≥ 0.

As moB (Bi) =
∑

A:B(A)=Bi
mb(A) the above condition reads as

{ ∑

A⊆Bi

mb(A)
( ∑

B:B(A)=Bi

αB

)
=

∑

A⊆Bi:Bρ(A)=Bi

mb(A) ∀Bi ∈ C.

Remembering that Bρ(A) = Bi iff A ⊆ Bi, 6⊂ Bi−1 we get
{ ∑

A⊆Bi

mb(A)
( ∑

B:B(A)=Bi

αB

)
=

∑

A⊆Bi,6⊂Bi−1

mb(A) ∀Bi ∈ C.

For i = 1 the condition is mb(B1)
(∑

B:B(B1)=B1
αB

)
= mb(B1) i.e.

∑

B:B(B1)=B1

αB = 1,
∑

B:B(B1) 6=B1

αB = 0.



Replacing this condition in the second constraint i = 2 yields

mb(B2 \B1)
( ∑

B : B(B1) = B1,
B(B2 \B1) = B2

αB

)
+ mb(B2)

( ∑

B : B(B1) = B1,
B(B2) = B2

αB

)
=

= mb(B2 \B1) + mb(B2)

i.e.

mb(B2 \B1)
( ∑

B : B(B1) = B1,
B(B2 \B1) 6= B2

αB

)
+ mb(B2)

( ∑

B : B(B1) = B1,
B(B2) 6= B2

αB

)
= 0

which implies αB = 0 for all the assignment functions B such that B(B2\B1) 6=
B2 or B(B2) 6= B2. The only non-zero coefficients can then be the αB s.t.
B(B1) = B1, B(B2 \B1) = B2, B(B2) = B2.
By induction you get that ∀B 6= Bρ we have αB = 0 .
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