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Abstract

In this paper we describe a characterization of “vi-
sual action” that encodes local photometry via a choice
of interest operators and global dynamics via a realiza-
tion of a stochastic dynamical model. In order to allow
action detection in clutter, it is necessary for the cor-
responding models to have a compositional property,
in that a simple action (e.g. foreground action) can be
detected within a more complex one (e.g. foreground
and background actions). We show that this is the
case for the model we propose, which can therefore be
used as a basis for building models of dynamic scenes
from images without explicit supervision, by compos-
ing a complex action from a collection of elementary
ones.

1 Introduction

Interpreting dynamic scenes remains one of the
most important and yet largely untapped problems
in computer vision, mainly because of the large vari-
ability in visual measurements of a same movement.
A model of an “action” must embed invariance to all
distracting factors either explicitly (i.e. as part of the
model) or implicitly (by means of training).

For highly structured objects (like human bodies)
detecting an action (e.g. a person crossing the road)
can be subsumed into a parametric statistical estima-
tion problem (see for instance [2, 11] and references
therein). Invariance to some of the parameters (e.g.
photometry) can instead achieved by choice of local
features (e.g. optical flow), while a small number of
parameters (e.g. lengths and angles between limbs)
can be inferred from the data.

In this paper we present a general model of an “ac-
tion” that includes both the dynamical and photo-
metric characterization of the motion. We show that
this model has compositional properties, in the sense
that a model of a simple action can be detected from
the model of a more complex one (in a dynamic “fore-
ground + clutter” scenario). We adopt hidden Markov
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models as a method for extracting the invariant dy-
namic pattern from a collection of instances of the
action. Its compositional behavior is tested by show-
ing how the model of a simple action can be recovered
from cluttered sequences.

In perspective, our long-term goal is the construction
of models of spatio-temporal visual scenes from data
without direct supervision, integrating top-down in-
formation, in the form of prior explicit models, with
data driven bottom-up representations.

1.1 Related work

The problem of recognizing complex motion pat-
terns in image sequences has been investigated in var-
ious settings. A common approach consists of extract-
ing low-level features by local spatio-temporal filter-
ing on the images and using hidden Markov models
(HMMs) on the collection of sequences of points thus
obtained for recognition and classification tasks [8].
In [10], parametric HMMs are introduced for recog-
nizing gestures that exhibit dependence on a set of
parameters, while in [1] coupled HMMs are used for
modeling interactions of two mobile objects. Further-
more, in [4] more complex actions are recognized by
computing the probability of a sequence of elementary
actions detected by HMMs with a stochastic proba-
bilistic parsing algorithm.

2 Modeling actions

A satisfactory definition of the concept of “action”
requires an accurate analysis of the problem. The
meaning of a motion is often not associated to the
entire trajectory. For instance, in a pointing gesture
the crucial part is the arm reaching a steady, extended
position no matter what trajectory it follows. Trying
to parameterize the nuisance variability of a class of
trajectories leads to fragile models.

Even more important, the meaning of the action
can be associated to different aspects of the move-
ment: periodicity (closing the hand just once does not
mean “bye!”), shape variations (e.g. hand gestures),



critical configurations (the pointing gesture again),
spatial trajectories (e.g. drawing). Therefore, in an
unsupervised framework a multiple feature represen-
tation is necessary.

Consider a sequence of images {I;,, It,, ..., It,, ...}
and let {¢;,i = 1...P} be a number of spatial or
spatio-temporal filters, i.e. functions ¢; : Q; — RFi
where (2; is a subset of the image lattice. The location
of the maximal response of each filter changes, in gen-
eral, during the sequence, yielding a set of trajectories
{fi(t), i=1...F,t =1,2,...}, which we call feature
trajectories. Only some of these feature trajectories
will be of interest; we call the others the “background
scene”. Of course portions of feature trajectories may
be missing.

We assume that feature trajectories of interest de-
scribe smooth transitions between a certain number
N of configurations of maximal responses of filters
{v;, 7 =1... N}, which we call feature configurations.
They represent an invariant pattern that can be ex-
tracted from every instance of the action and does not
necessarily encode the whole feature trajectories.

It is pretty natural to adopt the formalism of the hid-
den Markov models to represent this invariant pattern.

3 Learning actions

A hidden Markov model is a statistical model in
which the states {Xj} form a Markov chain; the
only observable quantity is a corrupted version yj, of
the state called observation process. Using the no-
tation in [3] we can associate the elements of the fi-
nite state space X = {1,...,n} to coordinate versors
e; =(0,..,0,1,0,..,0) € R* and write the model as

Xk+1 = AXk + Vk+1
Yr+1 = C Xy + diag(Wi41) Xk,

where {Vi4+1} is a sequence of martingale increments
and {Wy41} is a sequence of i.i.d. Gaussian noises
N(0,1). The HMM parameters will be the transition
matric A = (a;;) = P(Xp41 = e;| Xy = ej), the ma-
trix C of the means of the state-output distributions
(in fact C; = E[p(Yi+1|Xk = €;)]) and the matrix ¥
of the variances of the output distributions.

A fundamental property of this class of models is
the capability of self-learning the set of parameters
A,C and X given a sequence of observations that are
supposed to be produced by the system. The algo-
rithm we use is an application of the EM technique
[3]. The probabilistic distance between the measure-
ment and each state representative C' - e; in the d-
dimensional observation space

=
(ye) = [[ e 9~N(0,1)
j=1 77 9(Yjs1)

is the error which is fed-back to drive the recursive
estimator for the state:

X1 =D AXe, T (Y1)

i=1

where n is the number of states, A; is the i-th column
of A and (-,-) is the usual scalar product.

Assuming that the “correct” filters are given,
HMDMs provide a method to build the invariant pat-
tern or graph between feature configurations. Feature
configurations v, are encoded as columns C'; of the C'
matrix while their dynamics is associated to the tran-
sition probabilities in the A matrix.

4 Detecting actions in clutter

We want to test the compositional property of the
model we described above, by showing that it is pos-
sible to recover the invariant pattern from the model
of a complex motion. In other words, there is a map
between the model representing a sequence contain-
ing both foreground and background motion and the
model of the action of interest. We need to make the
nature of this map precise, find a way of extracting
the invariant information from an HMM built from
a cluttered sequence and a criterion to compare the
extracted information with the learned model of the
action of interest.

Now let us suppose that we are given the suitable

family of local features. It is reasonable to claim that
each state of the model generated in presence of clut-
ter corresponds to a state of the learned model for the
action of interest.
Hence, the set of states of the first model associated
to the same state of the learned HMM will roughly
represent the same positions of the foreground fea-
tures. Therefore, if we select the components of the
state-output matrix C associated to the local features
describing the action, the columns of the resulting ma-
trix must form clusters in the associated subspace of
the feature space. This operation can be done using
a standard technique, for example k-means clustering,
by considering the means of the state-output distri-
butions collected in C' as vectors in the d-dimensional
feature space.

Once produced the set of n. state clusters C* =
{e¥, ..., e'flk } we need to rearrange the transition matrix
in order to produce a new admissible model. This
can be done considering one cluster at a time with no
particular ordering, and grouping the corresponding



states.
After simple calculations we get

P(Xt+1 S Ck|Xt = €i) = Z P(Xt+1 = €j|Xt = ei)
e; ECk

while the transition probabilities from the cluster must
be normalized with its cardinality:

P(Xi1 =ei|X; € CF) = o7
This operation is repeated for the next cluster on the
new A until we eventually get an n. X n. matrix. Fi-
nally the columns of the reduced A must be permuted
to match the order of the clusters in the reduced C
matrix.

Finally, once extracted the reduced model from the
cluttered sequence we need to define a distance among
hidden Markov models in order to measure the sim-
ilarity of a reduced model with one or more learned
models for the action of interest. A natural way to
comply is computing the Kullback-Leibler number be-
tween their output processes from the parameters of
the models. In [9] the conjecture that the logarithms
of the output sequence of HMMs have Gaussian dis-
tribution is exploited to use the integer moments of
the output sequence probabilities to compute the KL
number. Unfortunately, in [6] it is shown that this
conjecture is wrong in the case of two simple HMMs.
We decided to use a Monte-Carlo method to compute
an approximated KL number, according to [5].

In conclusion we can summarize our algorithm for
action detection in clutter as follows:

1. select feature components associated to the action
of interest;

2. project poses onto the corresponding subspace of
the feature space;

3. construct new poses by clustering;

4. create the reduced model by rearranging the
topology of the graph;

5. compare the reduced model extracted from clut-
ter with the learned one using the KL distance.

In the next section we are going to test the behavior of
this technique in a simple but interesting situation and
show how the results confirm our basic assumptions.

5 Experiments

As we mentioned above, the choice of a good feature
representation is critical. In particular, we have to
guarantee the invariance of our representation with
respect to translations on the image plane and the

Doe;eck P(Xip1 = il Xy = ¢))

Figure 1: Feature computation. Top: feature trajec-
tory and bounding boxes. Bottom: mutual distances
and orientations.

scaling effect due to distance variations. Given a set
of feature trajectories {fi(t),..., fr(t)}, t = 1,..,T
in the image plane we compute a new feature vector
y(t) in the following way: the bounding box for each
feature trajectory is computed (Figure 1-top) and the
mutual distance r;;(¢) and orientation 6;;(t) between
each pair of feature at each time instant is measured
(Figure 1-bottom). Calling {f;(t)} the rescaled feature
coordinates with respect to the unit square and 7;;(¢)
the mutual distances normalized by using the median
of r;;(t) along the entire trajectory we define

y(t) = [{ i) =y {7 (8)}=y {cos(8i5 (D))"
It can be proved that

e {y(t)}s=1,... T is invariant with respect to transla-
tion and scaling along both axes;

e called YV : (fi(t), f2(t)) — y(t) the map trans-
forming pairs of feature trajectories into a feature
vector, the restricted application obtained by fix-
ing one argument Y(f1(t), (.)) is injective.

In other words, fixing a scale and offset for one trajec-
tory force the other into a unique absolute position.

To test our conjecture about the compositional prop-
erties of HMMs, we built a dataset composed by in-
stances of three actions. “Fly”, consisting on person



Figure 2: Examples of motion. Left: a “fly” action.
Right: combined action with “fly” and “cycle” both
present and no synchronization.

moving his arms as wings (Figure 2-left), “cycle” (a
rough cycle described by a hand) and the combina-
tion of these two, executed by two people (see Figure
2-right). We implemented a simple hand tracker by
means of cross-correlation filters and computed the
HMM models for each of these sequences and a vari-
able number of states: n = 2,...,5 for “fly” actions,
n = 2,...,4 for “cycle” gestures and n = 6,...,10 for
the instances of the combined motion. We also as-
sumed absence of occlusions. Figure 3-top shows the
graph of one of these combined models.

We applied the clustering procedure to the clut-
tered sequences and extracted a collection of reduced
models for the “fly” gesture by selecting the appropri-
ate feature components. Figure 3 shows the effect of
the reduction algorithm on the transition matrix.

An analysis of the C' matrices of both actions shows
that the automatically generated clusters group to-
gether states associated to the same phase of the “fly”
action. For instance, states 2 and 5 collected in the
cluster B both capture the phase of “fly” in which the
hands are down. The topology of the reduced model
encodes almost exactly the dynamics of the action, a
double chain connecting the state with hands down
(B) with the state “hands up” (A) going through two
intermediate positions.

The reduced models of the “fly” gestures have been
calculated from the HMMs of a subset of the clut-
tered sequences, with number of states n=6 and n=7.
Resting on our conjecture we expected both the topol-
ogy and the pose matrix of these HMMs to be simi-
lar to the models learned in absence of clutter. In
fact, Figure 4 shows the distribution of the poses
{Cj, j =1,...,n} of the 25 models built for “fy” with
no distractors in the subspaces related to the right
hand and the left hand respectively, plotted as crosses.
For n = 2 two distinct aggregations are clearly visible,
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Figure 3: Effect of the clustering on the topology of
the transition matrix. Top: model for the cluttered
motion in Figure 2-right. Bottom: reduced model for
“HyH'

proving the stability of the model with respect to the
variability of the action. On the other hand, the small
squares represent the position of the poses for the re-
duced models for “fly” achieved by clustering from
the cluttered sequences. They follow the same distri-
bution, and the same behaviour is recognizable in the
diagrams for n = 4. It is worth to notice that it is not
necessary to choose a precise number of states for the
cluttered model in order to extract the invariant pat-
tern, but it suffices to have a rich enough description
(i.e. m > ng for some ny).

As a definitive evidence we implemented the Kullback-
Leibler distance and applied it to compare the models
of “cycle”, “fly” and “fly in clutter” with the same
number of states. The results for n = 2 and n = 4 are
shown in Figure 5, and clearly confirm the similarity
of reduced and a-priori models.

6 Towards unsupervised detection

The above results support our conjecture on the
presence of invariant patterns of actions in clutter
when actions are modeled as described in sections 2,
3. Hence we can plan the formulation of an algorithm
for unsupervised detection of such models from a col-
lection of sequences containing instances of the same
unknown action.
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Figure 4: Distribution of the states of “fly” (crosses) and reduced models for “fly in clutter” (squares) in the
normalized feature space (unit square). From left to right: n=2, right hand; n=2, left hand; n=4, right hand;

n=4, left hand.

K-L distance
T
L
K-L distance
=

K-L distance

14 16 18 20 0 2 4

14 16 18 20 0 2 4 6 14 16 18 20

8 10 12
Observation sequence length

Figure 5: Kullback-Leibler distance between models for “fly” (dotted lines) and “fly from clutter” (solid lines)
and an arbitrary model for “fly” chosen as reference: the x axis plots the length of the observation sequence, the
v axis the KL number. Left: n=2. Center: n=4. Right: for comparison, distance between a 3-state model for
“fly” and the 3-state models for “cycle”. Notice that the scales in the three plots are different and similar actions

cluster closely while different actions are well separated.

In these first tests we have assumed the absence of
occlusions. Of course the problem remains critical,
for standard HMM theory does not allow for obser-
vation spaces of variable dimension. A possible solu-
tion can be using standard statistical techniques for
the treatment of missing data [7], based on the EM
algorithm. More interesting would be the learning of
models based on hybrid systems composed by different
HMDMs each representing a state of occlusion.

References
[1] M. Brand, N. Oliver, and A. Pentland. Coupled hmm
for complex action recognition. In Proc. of Conference
on Computer Vision and Pattern Recognition, volume 29,
pages 213-244, 1997.

[2] C. Bregler. Learning and recognizing human dynamics in
video sequences. In Proc. of the Conference on Computer
Vision and Pattern Recognition, pages 568-574, 1997.

[3] R.J. Elliot, L. Aggoun, and J. B. Moore. Hidden Markov
models: estimation and control. 1995.

[4] Y. A. Ivanov and A. F. Bobick. Recognition of visual ac-
tivities and interactions by stochastic parsing. In IEEE

10]

(1]

Trans. on Pattern Analysis and Machine Intelligence, vol-
ume 22(8), pages 852-872, 2000.

B. H. Juang and L. R. Rabiner. A probabilistic distance
measure for hidden markov models. ATéT Technical Jour-
nal, Vol. 64(2):391-408, February 1985.

M. Karan. Frequency Tracking and Hidden Markov Mod-
els. PhD thesis, 1995.

J. S. Liu and Y. Wu. Parameter expansion for data aug-
mentation. In Journal of the American Statistical Associ-
ation, volume 94, pages 1264-1274, 1999.

T. Starner and A. Pentland. Real-time american sign lan-
guage recognition from video using hmm. In Proc. of ISCV
95, volume 29, pages 213-244, 1997.

R. L. Streit. The moments of matched and mismatched
hidden markov models. IEEE Trans. on Acoustics, Speech,
and Signal Processing, Vol. 38(4):610-622, April 1990.

A.D. Wilson and A. F. Bobick. Parametric hidden markov
models for gesture recognition. In IEEE Trans. on Pattern
Analysis and Machine Intelligence, volume 21(9), pages
884-900, Sept. 1999.

Y. Yacoob and M. J. Black. Parameterized modeling and

recognition of activities. In Computer Vision and Image
Understanding, volume 73(2), pages 232-247, 1999.



