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Online action localisation and future location prediction

Predicted label = Pick (a) Video observed = 25% (b) Video observed = 50% (c) Video observed = 100%

Detected tube Predicted tube .

The task is to determine/predict what action is occurring in a video, as early as possible using the
observed part of the video, localise it (in red above), and predict its future locations (in blue above).

» Action Tube Localisation: a set of linked bounding boxes covering each individual action instance.
» Online: the action tube should be constructed incrementally.

» Label Prediction: to predict the label of the action tube at any given point in time.

» Location Prediction: to predict the future locations of the action tube at any given point in time.

Why?

» Real-time online action localisation and future prediction are essential for many applications, e.g.
surveillance, human-robot interaction, autonomous driving, robotic surgery etc.

» Future location prediction is essential to design reactive system, e.g. autonomous driving, robotic surgery.

Contributions

» Unlike other action label prediction [1,2], or trajectory prediction methods [3,4], for the first time, we solve
the action prediction and future location prediction problem simultaneously and incrementally;

» Training a network to make predictions also helps improv action detection performance,

» We demonstrate that the feature-based fusion of optical flow [5] based feature with appearance based
features works better than late fusion in the context of action detection.

Action Micro-tubes and Action Detection
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» Action micro-tube detection based on two frames separated by A frames, Saha et al. [7].
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» The Linking of micro-tubes to create whole action-tube is based on Singh et al [6]

Results: Action detection on JHMDB-21

Method \\ threshold & 0.2 0.5 0.75 0.5:0.95 Accuracy %
Online-SSD Singh et al. [6] 73.8 72.0 44.5 41.6 -
AMTnet Saha et al. [7] rgb-only 57.7 55.3 -- -- --
ACT Kalegoton et al. [8] 74.2 73..7 52.1 44.8 61.7
T-CNN Hou et al. [9] 78.4 76.9 - - 67.2
AMTnet-LateFusion 71.7 71.2 49.7 42.5 65.8
AMTnet-FeatFusion-Concat 73.1 72.6 59.8 48.3 68.4
AMTnet-FeatFusion-Sum 73.5 72.8 59.7 48.1 69.6
Ours TPnet — 053 72.6 71.2 58.0 46.7 67.5
Ours TPnet — 453 73.8 73.0 59.1 47.3 68.4
Ours TPnet — 051 74.6 73.1 60.5 49.0 69.8
Ours TPnet — 451 74.8 4.1 61.3 49.1 68.9

TPnet - abc represents our TPnet, where a = Ap, b = Afand c = n.
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Predicting future and past locations along with micro-tubes
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Linking micro-tubes to predicting future of action tube
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Results: Future location prediction
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TPnet,,. represents our TPnet, where a = Ap, b = Afand c =n.

Results: Action label prediction and online action detection
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